CLOUDZ=RA

Streaming for the masses with
FlinkSQL

Marton Balassi, Matyas Orhidi

About Us

Marton Balassi

@MartonBalassi, mbalassi@cloudera.com

Apache Flink PMC member since 2014
Spent 3 years at Cloudera as a Solutions
Architect,

worked with ~50 customers directly
Currently leading the Streaming Analytics
(Apache Flink)

Engineering team at Cloudera

Matyas Orhidi
linkedin.com/in/matyasorhidi

e Joined Cloudera in 2016
o Premier Support
o Professional Services
o Engineering
e Worked with strategic accounts
o Deutsche Telekom, Deutsche Bank,
Lufthansa, IQVIA
Architect & Security SME
e Co-leading the CSA Engineering team with
Marton

7

mailto:mbalassi@cloudera.com

Agenda

The Power of Flink

» Noteworthy users
» Known use cases
» Basic Concepts

o Flink APIs

The Simplicity of SQL

» Traditional vs Streaming SQL
» Streams, Dynamic Tables & Continuous Queries
o Queries and Time

= _ Users and use cases

Powered by Flink

ibaba.com CapitalOne —
airbnb fan ebay ERICSSON \

%,
NETFLIX lyﬁ otto group Te';ﬁ‘;ﬁgm UBER VYelp%

7

Uber’s data infrastructure

Lo} |
Dashboards Ad-hO(': Machine Learning
Analytical Application ExpiRmion
Data Metadata
B0 Workflow Platform
Mobile
App SQL (Presto)
Events
Sensors OLAP (Pinot)
Telemetry
Backend .
Events Flink
Online
Slotage Kotk Ingestion = Data HDFS
3rd Party Lake
Feeds

https://arxiv.orq/pdf/2104.00087.pdf

7/

https://arxiv.org/pdf/2104.00087.pdf

OPPOQO’s Real Time Data WareHouse

Access System Raw Table Hourly ETL Details Table Daily Summary Summary Table
NiFi H HDFS H Hive)—{ HDFS J—{ Hive]—-[HDFS J

MysaL/ Elasticse 1 Redis/
Kylin arch HBase

[T 1
{InnerEve} (Insights] [OService

Mobile Phone [Presto

L Hue EasyData
Ad Hoc Query Self-service Report Analysis ~ User Profiling APl Service
Data Extraction
Access System Raw Table Streaming ETL Details Table Streaming Summary Summary Table
= Apache | (.) [Apache | .) [Apache
NiFi Kafka J L Flink J L Kafka | L Flink J L Kafka

(MySQL/] [ElasticseH Redis/]

Mobile Phone Flink Druid arch HBase
OStream [InnerEye] (Insights J [OServiceJ
Ad Hoc Query Report Analysis User Profiling API Service

https://resource.alibabacloud.com/whitepaper/real-time-is-the-future-—apache-flink-best-practices-in-2020_1959 (page 96-100)

7

https://resource.alibabacloud.com/whitepaper/real-time-is-the-future---apache-flink-best-practices-in-2020_1959

' & The Power of Flink

Flink is a Distributed Data Processing System

r— - - - - B r— - -
| I Event-driven Streaming Stream & Batch |
| (Real-time) | Applications Pipelines Analytics |
______ | Events | | "
1 | | | Application
| 0
Trasnactions | l | !
Logs I | I |
10T |4>| — Event log '
Clicks | | —— [|
S - | =
______ | Database, [| Database
| File System, [I
KV-Store Resources Storage
| | (K8s, YARN, ..) (HDFS, HBase, Kudu, ...) |
o - — J C

Consistency, Scale, Ecosystem

Flexible and expressive APIs
Guaranteed correctness

» Exactly-once state consistency
» Event-time semantics

In-memory processing at massive scale

o Runs on 100000s of cores
» Manages 100s TBs of state

Flexible deployments and large ecosystem

o Kubernetes, YARN, Docker, HDFS, Kafka, HBase, Kudu, S3, Kinesis...

7

Event-driven Applications

Traditional application design
Compute & data tier architecture
React to and process events
State is stored in (remote) database

Event-driven application
State is maintained locally
Guaranteed consistency by
periodic state checkpoints
Tight coupling of logic and data
Highly scalable design

Transactional Application

Events Application trigger4>u Action

write read
< .
Transactional
Database

Event-driven Application

Application trigger—»“ Action
- B —
write—p- (S A} '

Persistent
storage for
checkpoints
/ 1

Event-Time and Processing-Time

This is called event time

I |
| i
| : : I
; . Episode V : Episode | : . : i
E\pr\llsode v The Empire Strikes Episode VI . T Episode Il Episode llI . Episode VII

ew Hope Back Return of the Jedi Manace Attack of the Clones Revenge of the Sith The Force Awakens
| 1977 1980 1983 1999 2002 2005 2015 |
| i
| I
e e e e e .

This is called processing time

What is Event-Time?

e Arecord is processed based on an embedded
timestamp.
e The “current” time is determined by watermarks
o A watermark is a special record with a
timestamp w
o Denotes that no more records with a time t <=
w will arrive
e Properties of event-time processing
o Results are deterministic
o Same semantics when processing recorded
and live data
o Can trade result latency for result
completeness

Processing Time

Ideal

Event Time

7

Layered APls

High-level
Analytics AP

Stream- & Batch
Data Processing

Stateful Event-
Driven Applications

SQL / Table API (dynamic tables)

— Conciseness +

+ Expressiveness —

SQL & Table API

Unified APIs for streaming data and data at rest

Run the same query on batch and streaming data
ANSI SQL: No stream-specific syntax or semantics!
Many common stream analytics use cases supported

SELECT [Count clicks per user and session (defined J
userId, by 30 min. gap of inactivity).
COUNT(*) AS cnt
SESSION_START(clicktime, INTERVAL '30' MINUTE)
FROM clicks
GROUP BY
SESSION(clicktime, INTERVAL '30' MINUTE),
userId

7 m

DataStream API

// a stream of website clicks Count clicks per user and session (defined
DataStream<Click> clicks = ... by 30 min. gap of inactivity)_
Same as the previous SQL query.

DataStream<Tuple2<String, Long>> result = clicks
// project clicks to userId and add a 1 for counting
.map (
// define function by implementing the MapFunction interface.
new MapFunction<Click, Tuple2<String, Long>>() {
@0verride
public Tuple2<String, Long> map(Click click) {
return Tuple2.of(click.userId, 1L);
}

})
/! key by userId (field 0)

.keyBy(0)

// define session window with 30 minute gap
.window(EventTimeSessionWindows.withGap(Time.minutes(306L)))

// count clicks per session. Define function as lambda function.
.reduce((a, b) -> Tuple2.of(a.f@, a.f1 + b.f1));

“" . The Simplicity of SQL

The Simplicity of SQL

Implementing native Flink applications is challenging
» In-depth knowledge of streaming concepts
» Knowledge of distributed data processing
» Java/Scala experience

Writing Flink applications with SQL is easy

Everybody knows SQL

It is the most widely used language for data analysis

SQL queries are optimized and efficiently executed

Same syntax and semantics for batch & stream processing

7

SQL and Table API

» Apache Flink features two relational APls
» Standard compliant SQL API
o Uses Industry-standard SQL parser (Apache Calcite)
» Language-integrated Table API for Java, Scala, and Python
o Composeses queries from relational operators such as selection, filter,
and join
» Easily switch between all Flink APIs

20

Key Features

Basic Statements

CREATE TABLE, DATABASE, VIEW,
FUNCTION

DROP TABLE, DATABASE, VIEW, FUNCTION
ALTER TABLE, DATABASE, FUNCTION
SELECT (Queries)

INSERT INTO

DESCRIBE, EXPLAIN

SHOW CATALOGS, DATABASES, TABLES..
USE

LOAD, UNLOAD MODULE

SET, RESET

Queries

SELECT .. FROM .. WHERE

JOINs

Group Aggregation

Over Aggregation

Deduplication

Full TPCS-DS support (batch)

JOIN (interval, temporal, lookup) (streaming)
Window Aggregation (streaming)

Pattern Recognition (streaming)

7 21

Streaming vs Traditional SQL

Liz

CLOUDZ=RA

. N N
clicks

(user | url |

S~
j_l_

r

SELECT

user,

COUNT(url) as cnt
FROM clicks
GROUP BY user

\.

o ——

Dynamic Tables and Continuous Queries

Dynamic tables are the core concept of Flink's Table APl and SQL support
A stream is converted into a dynamic table

A continuous query is evaluated on the dynamic table yielding a new
dynamic table

The resulting dynamic table is converted back into a stream

Stream — . Continuous . = Stream
Dynamic Query Dynamic

Table Table

7

Use Cases

Build scalable, real-time ETL pipelines

Real-time ETL

24

Use Cases

Define and maintain materialized views

Serving Layer

Materialized View

Dashboards

25

Table & SQL Connectors

Name

Filesystem

Source

Bounded and Unbounded Scan,
Lookup

Sink

Streaming Sink, Batch Sink

Elasticsearch

Not supported

Streaming Sink, Batch Sink

Apache Kafka

Unbounded Scan

Streaming Sink, Batch Sink

Amazon Kinesis Data
Streams

Unbounded Scan

Streaming Sink

JDBC

Bounded Scan, Lookup

Streaming Sink, Batch Sink

Apache HBase

Bounded Scan, Lookup

Streaming Sink, Batch Sink

Apache Hive

Unbounded Scan, Bounded Scan,
Lookup

Streaming Sink, Batch Sink

7

26

https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/kinesis/
https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/kinesis/
https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/hbase/

Flink DDL

CREATE TABLE KafkaTable (
user_id BIGINT,
item_id BIGINT,
behavior STRING,
ts TIMESTAMP(3) METADATA FROM 'timestamp'

) WITH (
‘connector' = 'kafka',
"topic' = 'user_behavior’,
'properties.bootstrap.servers’' = 'localhost:9092",
'format' = '"json'

)

7

Common Table Formats

Formats Supported Connectors

CSv Apache Kafka, Upsert Kafka, Amazon Kinesis Data
Streams, Filesystem

JSON Apache Kafka, Upsert Kafka, Amazon Kinesis Data
Streams, Filesystem, Elasticsearch

Apache Avro Apache Kafka, Upsert Kafka, Amazon Kinesis Data
Streams, Filesystem

Apache Parquet Filesystem

Apache ORC Filesystem

Debezium, Maxwell, Canal CDC

Apache Kafka, Filesystem

7

28

Queries and Time

Typical Questions

"Join price info with most recent exchange rate"
"Emit an alert if 3 unsuccessful login attempts occurred within 2 minutes”

"Count the number of 403 requests per user over the duration of a session’

7

29

Event Time vs Processing Time

CREATE TABLE clicks (
user VARCHAR,
url VARCHAR,
cTime TIMESTAMP(3),
WATERMARK FOR cTime AS cTime — INTERVAL '2' MINUTE)

CREATE TABLE clicks (
user VARCHAR,
url VARCHAR,
cTime AS PROCTIME())

30

TUMBLE Windows

e otme [
very [720000 | 7rome g
(vary 12550 | rodrd=2 |}
5o 10700 | poana-s B
e [155500 ood=7 |}
;

(

)

.

SELECT

user,
TUMBLE_END(
cTime,
INTERVAL '1' HOURS)
AS endT,
COUNT(url) AS cnt

FROM clicks
GROUP BY

user,
TUMBLE (
cTime,
INTERVAL '1' HOURS)

ek
Coeer Tonam e
— e

V,

7

SESSION Windows

count the number of 403 requests per user over the duration of a session

user 1

user 2

user 3

A

window 4
®
window 4
000!
window 3

window 2 window 3

o000 000 O
window 1 window 2 window 3

o 000~—00: O
window 1

window 1

window 2
000

session gap

time

7

SESSION Windows in Flink SQL

Queries and Time

SELECT userid,
SESSION_START(log_time, INTERVAL '10' SECOND) AS sstart,
SESSION_END(log_time, INTERVAL '10' SECOND) AS send,
COUNT(request_line) AS request_cnt

FROM server_logs

WHERE status_code = '403'

GROUP BY
userid,
SESSION(log_time, INTERVAL '10' SECOND)

7

33

Summary

Flink is a powerful stream processor, gaining adoption
» Consistency at scale
» Wide range of users and use cases
» Foundation for real time data infrastructure
Writing Flink applications with SQL is easy
» Everybody knows SQL
» Itis the most widely used language for data analysis
» SQL queries are optimized and efficiently executed
« Same syntax and semantics for batch & stream processing

7

35

