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● Apache Flink PMC member since 2014
● Spent 3 years at Cloudera as a Solutions 

Architect,
worked with ~50 customers directly

● Currently leading the Streaming Analytics 
(Apache Flink)
Engineering team at Cloudera
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○ Professional Services
○ Engineering
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○ Deutsche Telekom, Deutsche Bank, 

Lufthansa, IQVIA
● Architect & Security SME
● Co-leading the CSA Engineering team with 

Marton
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Agenda

The Power of Flink
● Noteworthy users
● Known use cases
● Basic Concepts
● Flink APIs

The Simplicity of SQL
● Traditional vs Streaming SQL
● Streams, Dynamic Tables & Continuous Queries
● Queries and Time
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Users and use cases
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Powered by Flink
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Uber’s data infrastructure

https://arxiv.org/pdf/2104.00087.pdf

https://arxiv.org/pdf/2104.00087.pdf
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OPPO’s Real Time Data WareHouse

https://resource.alibabacloud.com/whitepaper/real-time-is-the-future---apache-flink-best-practices-in-2020_1959 (page 96-100)

https://resource.alibabacloud.com/whitepaper/real-time-is-the-future---apache-flink-best-practices-in-2020_1959
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The Power of Flink
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Flink is a Distributed Data Processing System
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Consistency, Scale, Ecosystem

Flexible and expressive APIs
Guaranteed correctness

● Exactly-once state consistency
● Event-time semantics

In-memory processing at massive scale
● Runs on 100000s of cores
● Manages 100s TBs of state

Flexible deployments and large ecosystem
● Kubernetes, YARN, Docker, HDFS, Kafka, HBase, Kudu, S3, Kinesis...
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Event-driven Applications

Traditional application design
● Compute & data tier architecture
● React to and process events
● State is stored in (remote) database

Event-driven application
● State is maintained locally
● Guaranteed consistency by 

periodic state checkpoints
● Tight coupling of logic and data 
● Highly scalable design

Transactional Application

Event-driven Application
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Event-Time and Processing-Time
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What is Event-Time?

● A record is processed based on an embedded 
timestamp.

● The “current” time is determined by watermarks
○ A watermark is a special record with a 

timestamp w
○ Denotes that no more records with a time t <= 

w will arrive
● Properties of event-time processing

○ Results are deterministic
○ Same semantics when processing recorded 

and live data
○ Can trade result latency for result 

completeness
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Flink APIs
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Layered APIs
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SQL & Table API

Unified APIs for streaming data and data at rest

● Run the same query on batch and streaming data
● ANSI SQL: No stream-specific syntax or semantics!
● Many common stream analytics use cases supported

SELECT 
  userId, 
  COUNT(*) AS cnt
  SESSION_START(clicktime, INTERVAL '30' MINUTE)
FROM clicks
GROUP BY 
  SESSION(clicktime, INTERVAL '30' MINUTE), 
  userId

Count clicks per user and session (defined 
by 30 min. gap of inactivity).
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DataStream API

// a stream of website clicks
DataStream<Click> clicks = ...

DataStream<Tuple2<String, Long>> result = clicks
  // project clicks to userId and add a 1 for counting
  .map(
    // define function by implementing the MapFunction interface.
    new MapFunction<Click, Tuple2<String, Long>>() {
      @Override
      public Tuple2<String, Long> map(Click click) {
        return Tuple2.of(click.userId, 1L);
      }
    })
  // key by userId (field 0)
  .keyBy(0)
  // define session window with 30 minute gap
  .window(EventTimeSessionWindows.withGap(Time.minutes(30L)))
  // count clicks per session. Define function as lambda function.
  .reduce((a, b) -> Tuple2.of(a.f0, a.f1 + b.f1));

Count clicks per user and session (defined 
by 30 min. gap of inactivity).
Same as the previous SQL query.
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The Simplicity of SQL
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The Simplicity of SQL

Implementing native Flink applications is challenging
● In-depth knowledge of streaming concepts
● Knowledge of distributed data processing
● Java/Scala experience

Writing Flink applications with SQL is easy
● Everybody knows SQL
● It is the most widely used language for data analysis
● SQL queries are optimized and efficiently executed
● Same syntax and semantics for batch & stream processing
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SQL and Table API

● Apache Flink features two relational APIs
● Standard compliant SQL API

○ Uses Industry-standard SQL parser (Apache Calcite)
● Language-integrated Table API for Java, Scala, and Python

○ Composeses queries from relational operators such as selection, filter, 
and join

● Easily switch between all Flink APIs
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Key Features

Basic Statements
● CREATE TABLE, DATABASE, VIEW, 

FUNCTION
● DROP TABLE, DATABASE, VIEW, FUNCTION
● ALTER TABLE, DATABASE, FUNCTION
● SELECT (Queries)
● INSERT INTO
● DESCRIBE, EXPLAIN
● SHOW CATALOGS, DATABASES,TABLES..
● USE
● LOAD, UNLOAD MODULE
● SET, RESET

Queries
● SELECT .. FROM .. WHERE
● JOINs
● Group Aggregation
● Over Aggregation
● Deduplication
● Full TPCS-DS support (batch)
● JOIN (interval, temporal, lookup) (streaming)
● Window Aggregation (streaming)
● Pattern Recognition (streaming)
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Streaming vs Traditional SQL
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Dynamic Tables and Continuous Queries

Dynamic tables are the core concept of Flink’s Table API and SQL support 
● A stream is converted into a dynamic table
● A continuous query is evaluated on the dynamic table yielding a new 

dynamic table
● The resulting dynamic table is converted back into a stream
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Use Cases
Build scalable, real-time ETL pipelines
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Use Cases
Define and maintain materialized views
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Table & SQL Connectors

Name Source Sink

Filesystem Bounded and Unbounded Scan, 
Lookup

Streaming Sink, Batch Sink

Elasticsearch Not supported Streaming Sink, Batch Sink

Apache Kafka Unbounded Scan Streaming Sink, Batch Sink

Amazon Kinesis Data 
Streams

Unbounded Scan Streaming Sink

JDBC Bounded Scan, Lookup Streaming Sink, Batch Sink

Apache HBase Bounded Scan, Lookup Streaming Sink, Batch Sink

Apache Hive Unbounded Scan, Bounded Scan, 
Lookup

Streaming Sink, Batch Sink

https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/kinesis/
https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/kinesis/
https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/hbase/
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Flink DDL

CREATE TABLE KafkaTable (
  user_id BIGINT,
  item_id BIGINT,
  behavior STRING,
  ts TIMESTAMP(3) METADATA FROM 'timestamp'
) WITH (
  'connector' = 'kafka',
  'topic' = 'user_behavior',
  'properties.bootstrap.servers' = 'localhost:9092',
  'format' = 'json'
)
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Common Table Formats

Formats Supported Connectors

CSV Apache Kafka, Upsert Kafka, Amazon Kinesis Data 
Streams, Filesystem

JSON Apache Kafka, Upsert Kafka, Amazon Kinesis Data 
Streams, Filesystem, Elasticsearch

Apache Avro Apache Kafka, Upsert Kafka, Amazon Kinesis Data 
Streams, Filesystem

Apache Parquet Filesystem

Apache ORC Filesystem

Debezium, Maxwell, Canal CDC Apache Kafka, Filesystem
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Queries and Time

Typical Questions

"Join price info with most recent exchange rate"

"Emit an alert if 3 unsuccessful login attempts occurred within 2 minutes"

"Count the number of 403 requests per user over the duration of a session"
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Event Time vs Processing Time

CREATE TABLE clicks (
user VARCHAR,
url  VARCHAR,
cTime TIMESTAMP(3),
WATERMARK FOR cTime AS cTime – INTERVAL '2' MINUTE)

CREATE TABLE clicks (
user VARCHAR,
url VARCHAR,
cTime AS PROCTIME())
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TUMBLE Windows
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SESSION Windows

count the number of 403 requests per user over the duration of a session
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SESSION Windows in Flink SQL
Queries and Time

SELECT  userid,
  SESSION_START(log_time, INTERVAL '10' SECOND) AS sstart,
  SESSION_END(log_time, INTERVAL '10' SECOND) AS send,
  COUNT(request_line) AS request_cnt
FROM server_logs
WHERE status_code = '403'
GROUP BY 
  userid, 
  SESSION(log_time, INTERVAL '10' SECOND)
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Summary
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Summary

Flink is a powerful stream processor, gaining adoption
● Consistency at scale
● Wide range of users and use cases
● Foundation for real time data infrastructure

Writing Flink applications with SQL is easy
● Everybody knows SQL
● It is the most widely used language for data analysis
● SQL queries are optimized and efficiently executed
● Same syntax and semantics for batch & stream processing


