
Streaming for the masses with
FlinkSQL
Márton Balassi, Mátyás Őrhidi

2

About Us

Marton Balassi
@MartonBalassi, mbalassi@cloudera.com

● Apache Flink PMC member since 2014
● Spent 3 years at Cloudera as a Solutions

Architect,
worked with ~50 customers directly

● Currently leading the Streaming Analytics
(Apache Flink)
Engineering team at Cloudera

Matyas Orhidi
linkedin.com/in/matyasorhidi

● Joined Cloudera in 2016
○ Premier Support
○ Professional Services
○ Engineering

● Worked with strategic accounts
○ Deutsche Telekom, Deutsche Bank,

Lufthansa, IQVIA
● Architect & Security SME
● Co-leading the CSA Engineering team with

Marton

mailto:mbalassi@cloudera.com

3

Agenda

The Power of Flink
● Noteworthy users
● Known use cases
● Basic Concepts
● Flink APIs

The Simplicity of SQL
● Traditional vs Streaming SQL
● Streams, Dynamic Tables & Continuous Queries
● Queries and Time

4

Users and use cases

5

Powered by Flink

6

Uber’s data infrastructure

https://arxiv.org/pdf/2104.00087.pdf

https://arxiv.org/pdf/2104.00087.pdf

7

OPPO’s Real Time Data WareHouse

https://resource.alibabacloud.com/whitepaper/real-time-is-the-future---apache-flink-best-practices-in-2020_1959 (page 96-100)

https://resource.alibabacloud.com/whitepaper/real-time-is-the-future---apache-flink-best-practices-in-2020_1959

8

The Power of Flink

9

Flink is a Distributed Data Processing System

10

Consistency, Scale, Ecosystem

Flexible and expressive APIs
Guaranteed correctness

● Exactly-once state consistency
● Event-time semantics

In-memory processing at massive scale
● Runs on 100000s of cores
● Manages 100s TBs of state

Flexible deployments and large ecosystem
● Kubernetes, YARN, Docker, HDFS, Kafka, HBase, Kudu, S3, Kinesis...

11

Event-driven Applications

Traditional application design
● Compute & data tier architecture
● React to and process events
● State is stored in (remote) database

Event-driven application
● State is maintained locally
● Guaranteed consistency by

periodic state checkpoints
● Tight coupling of logic and data
● Highly scalable design

Transactional Application

Event-driven Application

12

Event-Time and Processing-Time

13

What is Event-Time?

● A record is processed based on an embedded
timestamp.

● The “current” time is determined by watermarks
○ A watermark is a special record with a

timestamp w
○ Denotes that no more records with a time t <=

w will arrive
● Properties of event-time processing

○ Results are deterministic
○ Same semantics when processing recorded

and live data
○ Can trade result latency for result

completeness

14

Flink APIs

15

Layered APIs

16

SQL & Table API

Unified APIs for streaming data and data at rest

● Run the same query on batch and streaming data
● ANSI SQL: No stream-specific syntax or semantics!
● Many common stream analytics use cases supported

SELECT
 userId,
 COUNT(*) AS cnt
 SESSION_START(clicktime, INTERVAL '30' MINUTE)
FROM clicks
GROUP BY
 SESSION(clicktime, INTERVAL '30' MINUTE),
 userId

Count clicks per user and session (defined
by 30 min. gap of inactivity).

17

DataStream API

// a stream of website clicks
DataStream<Click> clicks = ...

DataStream<Tuple2<String, Long>> result = clicks
 // project clicks to userId and add a 1 for counting
 .map(
 // define function by implementing the MapFunction interface.
 new MapFunction<Click, Tuple2<String, Long>>() {
 @Override
 public Tuple2<String, Long> map(Click click) {
 return Tuple2.of(click.userId, 1L);
 }
 })
 // key by userId (field 0)
 .keyBy(0)
 // define session window with 30 minute gap
 .window(EventTimeSessionWindows.withGap(Time.minutes(30L)))
 // count clicks per session. Define function as lambda function.
 .reduce((a, b) -> Tuple2.of(a.f0, a.f1 + b.f1));

Count clicks per user and session (defined
by 30 min. gap of inactivity).
Same as the previous SQL query.

18

The Simplicity of SQL

19

The Simplicity of SQL

Implementing native Flink applications is challenging
● In-depth knowledge of streaming concepts
● Knowledge of distributed data processing
● Java/Scala experience

Writing Flink applications with SQL is easy
● Everybody knows SQL
● It is the most widely used language for data analysis
● SQL queries are optimized and efficiently executed
● Same syntax and semantics for batch & stream processing

20

SQL and Table API

● Apache Flink features two relational APIs
● Standard compliant SQL API

○ Uses Industry-standard SQL parser (Apache Calcite)
● Language-integrated Table API for Java, Scala, and Python

○ Composeses queries from relational operators such as selection, filter,
and join

● Easily switch between all Flink APIs

21

Key Features

Basic Statements
● CREATE TABLE, DATABASE, VIEW,

FUNCTION
● DROP TABLE, DATABASE, VIEW, FUNCTION
● ALTER TABLE, DATABASE, FUNCTION
● SELECT (Queries)
● INSERT INTO
● DESCRIBE, EXPLAIN
● SHOW CATALOGS, DATABASES,TABLES..
● USE
● LOAD, UNLOAD MODULE
● SET, RESET

Queries
● SELECT .. FROM .. WHERE
● JOINs
● Group Aggregation
● Over Aggregation
● Deduplication
● Full TPCS-DS support (batch)
● JOIN (interval, temporal, lookup) (streaming)
● Window Aggregation (streaming)
● Pattern Recognition (streaming)

22

Streaming vs Traditional SQL

23

Dynamic Tables and Continuous Queries

Dynamic tables are the core concept of Flink’s Table API and SQL support
● A stream is converted into a dynamic table
● A continuous query is evaluated on the dynamic table yielding a new

dynamic table
● The resulting dynamic table is converted back into a stream

24

Use Cases
Build scalable, real-time ETL pipelines

25

Use Cases
Define and maintain materialized views

26

Table & SQL Connectors

Name Source Sink

Filesystem Bounded and Unbounded Scan,
Lookup

Streaming Sink, Batch Sink

Elasticsearch Not supported Streaming Sink, Batch Sink

Apache Kafka Unbounded Scan Streaming Sink, Batch Sink

Amazon Kinesis Data
Streams

Unbounded Scan Streaming Sink

JDBC Bounded Scan, Lookup Streaming Sink, Batch Sink

Apache HBase Bounded Scan, Lookup Streaming Sink, Batch Sink

Apache Hive Unbounded Scan, Bounded Scan,
Lookup

Streaming Sink, Batch Sink

https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/kinesis/
https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/kinesis/
https://ci.apache.org/projects/flink/flink-docs-master/docs/connectors/table/hbase/

27

Flink DDL

CREATE TABLE KafkaTable (
 user_id BIGINT,
 item_id BIGINT,
 behavior STRING,
 ts TIMESTAMP(3) METADATA FROM 'timestamp'
) WITH (
 'connector' = 'kafka',
 'topic' = 'user_behavior',
 'properties.bootstrap.servers' = 'localhost:9092',
 'format' = 'json'
)

28

Common Table Formats

Formats Supported Connectors

CSV Apache Kafka, Upsert Kafka, Amazon Kinesis Data
Streams, Filesystem

JSON Apache Kafka, Upsert Kafka, Amazon Kinesis Data
Streams, Filesystem, Elasticsearch

Apache Avro Apache Kafka, Upsert Kafka, Amazon Kinesis Data
Streams, Filesystem

Apache Parquet Filesystem

Apache ORC Filesystem

Debezium, Maxwell, Canal CDC Apache Kafka, Filesystem

29

Queries and Time

Typical Questions

"Join price info with most recent exchange rate"

"Emit an alert if 3 unsuccessful login attempts occurred within 2 minutes"

"Count the number of 403 requests per user over the duration of a session"

30

Event Time vs Processing Time

CREATE TABLE clicks (
user VARCHAR,
url VARCHAR,
cTime TIMESTAMP(3),
WATERMARK FOR cTime AS cTime – INTERVAL '2' MINUTE)

CREATE TABLE clicks (
user VARCHAR,
url VARCHAR,
cTime AS PROCTIME())

31

TUMBLE Windows

32

SESSION Windows

count the number of 403 requests per user over the duration of a session

33

SESSION Windows in Flink SQL
Queries and Time

SELECT userid,
 SESSION_START(log_time, INTERVAL '10' SECOND) AS sstart,
 SESSION_END(log_time, INTERVAL '10' SECOND) AS send,
 COUNT(request_line) AS request_cnt
FROM server_logs
WHERE status_code = '403'
GROUP BY
 userid,
 SESSION(log_time, INTERVAL '10' SECOND)

34

Summary

35

Summary

Flink is a powerful stream processor, gaining adoption
● Consistency at scale
● Wide range of users and use cases
● Foundation for real time data infrastructure

Writing Flink applications with SQL is easy
● Everybody knows SQL
● It is the most widely used language for data analysis
● SQL queries are optimized and efficiently executed
● Same syntax and semantics for batch & stream processing

