Cancer research with Al methods

Traditional drug development process

Alexander Fleming

Bacteria vs mould

ATP Synthase in action

ATP Synthase – amino acids

D -	
FIG.	1-continued

7777

a) b} c) d)	20 MRINPTTSDPGVSTLEKKNLGRIAQIIGPV MRTNPTTSRPGISTIEEKSVGRIDQIIGPV SPSPKAGATTGRIVAVIGAV MATGKUVQVIGAV	40 LNVAFPPGKMPNIYNALIVK LDITFPPGKLPYIYNALIVK VDVQFDEGLPPIL-NALEVQ VDVEFPQDAVPRVYDALEVQ	60 GRDTAGQPMNVTCEVQQLI SRDTADKQINVTCEVQQLI GRETRLVLEVAQHI NGNERLVLEVQQQL	80 GNN RVRAVAMSATDGLIRG GNN RVRAVAMSATBGLMRG GESTVRT IAMDGTEGLVRG GGGIVRT IAMGSSDGLRRG	100 MEVIDITGAPLSV MEVIDITGTPLSV QKVLDSGAPIRI -DVKDLEHPIEV
a) b) c) d)	120 PVGGPTLGRIENVLGEPVDNLRPVDIRTTS PVGGATLGRIENVLGEPIDNLGPVDTSATF PVGPETLGRIMNVIGEPIDERGPIKTKQFA PVGKATLGRIMNVLGEPVDMKGEIGEEERW	140 PIHRSAPAFTQLDTKSLIFE PIHRSAPAFIELDTKLSIFF AIHAEAPEFVEMSVEQELLV AIHRAAPSYEELSNSQELLE	160 TGIK VVNILLAPY RRGGRIC TGIK VVDLLAPY RRGGRIC TGDK VVDLLAPY ARGGRIC TGIK VI DLLAPY ARGGRIC	180 ELFGGAGVGKTVLIMELINN ELFGGAGVGLTVLIMELINN ELFGGAGVGKTVFIMELINN ELFGGAGVGKTVNMMELIRN	200 IAKAHGGVSVFG IALAHGGVSVFG VAKAHGGYSVFA IAIEHSGYSVFA
a) b) c) d)	220 GVGERTREGNDLYMEMKESGVINEONIAES GVGERTREGNDIYMEMKESGVVNEKNIEES GVGERTREGNDLYHEMIESGVINLKDAT-S GVGERTREGNDFYHEMTDSNVID	240 KVALVYGQMNEPPGARMRVG LVALVYGQMNEPPGARNRVG KVALVYGQMNOPPGARARVA KVSLVYGQMNEPPGNRLRVA	260 LTALTMA BYFRDVNEQDVI LTALTMA BYFRDVNKQDVI LTGLTMA BYFRDQEGQDVI LTGLTMA BYFRD-EGRDVI	280 LFIDNI FRFVQAGSEVSAL LFIDNL FRFVQAGSEVSAL LFIDNI FRFTQAGSEVSAL LFVDNI YRYTLAGTEVSAL	300 LGRMPSAVGVQP LGRMPSAVGVQP LGRIPSAVGYQP LGRMPSAVGYQP
a) b) c) d)	320 TISTEMGSLQERITSTKEGSITSIQAVYVP TISTEMGSLQERITSTLIGSITSIQAVYVP TIATNMGTMQERITITKKGSITSVQAVYVP TIAEEMGVLQERITSTKTGSITSVQAVYVP	340 ADDLTDPAPATTFAHLDATT ADDLTNPAPATTFAHLDATT ADDLTDPAPAVTFAHLDATT ADDLTDPSPATTFAHLDATV	360 VLSRGLAAKGIYPAVDPLI VLSRGLASKGIYPAVDPLI VLSRAIAELGIYPAVDPLI VLSRQIASLGIYPAVDPLI	380 DSTSTMLOPRIVGEEHYEIA DSTSTMLOPRIVGNEHYETA DSTGRIMNPNIVGSEHYDVA DSTSRQLOPLVVGQEHYDTA	400 QRVKETLORYKE QRVKETLORYKE RGVQXILOPYKS RGVQSILORYQE
a) b) c) d)	420 LODIIAILGLDELSEEDRLTVARARKIERF LODIIAILGLDELSEEDRLTVARARKIERF LODIIAILGMDELSEEDKLTVSRARKIORF LKDIIAILGMDELSEEDKLVVARARKIORF	440 LSQPFFVAEVFTGSPGKYVG LSQPFFVAEVFTGSPGKYVG LSQPFQVAEVFTGHLGKLVP LSQPFFVAEVFTGSPGKYVS	460 ILA ET IRGPOLIL SGELDSI LA ET IRGPOLIL SGELDGI LK ET IKGFODIL AGEYDHI LK DT IRGFK GIM EGEYDHI	480 LPEQAFYLVGNIDEATAKAM LPEQAFYLVGNIDEASTKAI LPEQAFYMVGPIBEAVAKAD LPEQAFYMVGSIBEAVEKAK	NLEMESKLKK NLEEESRLKK KLAEEHS KL

FIG. 2. Alignment of the sequences of the β -subunits of ATP synthase from (a) spinach (19) and (b) maize (18) chloroplasts, (c) bovine mitochondria, and (d) E. coli (15). Identities are boxed.

Deoxyribonucleic acid (DNA)

20,000 different proteins in human cells

Turbine simulating a human cell

01 Protein A acting on downstream Protein B

02 Protein B's downstream interactors inactive

03 Protein C - B interaction strength (proxy for strength of binding) greater than Protein A – B

04 Protein C's inactivation enough to prevent Protein B activation

- The network is universal to all human cells all 1500+ biological models in the library use the same "wiring diagram", just with different OMICS profiles
- 3800+ nodes
- 12000+ edges
- Modelling drugs or mutations achieved by modifying the parameters

Turbine Al

Generating raw simulation data at the same rate as the entire ATLAS detector at CERN

Configuring a simulation

Experiment Plate 1 Experiments: 3 Biological Samples* HEL CHEMBL458997 Doese (nanomolar) 1 2 10 2 10 2 Alteration Group 1 ; NODE MUTATION + EDGE PERTURBATION + t Node Mutation Node*

ATP6V1F Change* Value* inhibition 0

Challanges

Experiments	4 381 025
Runtime	44 hours 14 minutes
Shards	490 (1.5h on average)
Cost	951 USD
Stored data	214 GB

Running a simulation

Experiments	4 381 025
Runtime	44 hours 14 minutes
Shards	490 (1.5h on average)
Cost	951 USD
Stored data	214 GB

IC50 Ratio Log and Kill rates

How we interpret it?

IC50 ratio logs per biomarker

Pathways

Killrate Relative Change

Data pipelines

Data processing pipelines	19
Tableau Workbooks	57
Tableau Views	298

Software development teams

Research at Turbine

- Product: stable daily operations
- Research: new bold ideas
- Al meets biology physicist, mathematician, bioinfo, CS...
- Applied research deliver working prototypes

The challenge

- Predictive models: how cells respond to interventions?
 - Drug, CRISPR, RNAi...
- Features of a cell? Many modalities & detail level

The challenge

- Predictive models: how cells respond to interventions?
 - Drug, CRISPR, RNAi...
- Features of a cell? Many modalities & detail level
 - Genomics
 - Transcriptomics
 - Drug binding properties
 - Molecular information
 - Cell-line / patient identity
- OOD generalization to new test sets drug discovery in action
- What data to generate?

Turbine's pipeline

Turbine's pipeline – Are GNNs a good fit?

- Cell is a network of proteins
- Introduce graph-like priors -> address curse of • dimensionality
- Re-use what works & develop where needed

Geometric deep learning

- "Erlangen programme of ML" (ICLR 2021, M. Bronstein)
- Unifying theory of effective NN architectures
- Math, 19th Century: Non-Euclidean geometries (projective, affine, hyperbolic...). Which is the true one?
- Felix Klein, 1872, Erlangen Univ. study of invariance & symmetries unification of geometry
- Similar in physics later -> from conservation laws as symmetries (Noether, 1912) to 1975 standard model

Geometric deep learning

- Many de facto models we use. Similar to state of geometry in 19th century. Why do they work? What's in common?
 - RNN, CNN, GNN, transformer...

Benefits of geometric DL

- 1. Common math framework to derive the best NN architectures
- 2. Constructive methods to build **new architectures**

- Learn on non-Euclidean problems like graphs, meshes of 3D objects, maps...
 - No spatial locality (e.g for CV pixels and NLP seqs) how close are 2 nodes?
 - Translational equivariance -> nope
 - Coordinates of a node? -> nope

Graph Neural Networks - components

Permutation-invariant operators (output unaffected by node ordering)

Permutation-equivariant operators (output changes as the ordering of nodes)

Update rule of node representation

- Local neighbourhood
- Permutation-invariant update rule
- 1 step of depth in a GNN

Graph Neural Networks - math framework

permutation-invariant aggregation operator, e.g. sum $f(\mathbf{x}_i) = \phi(\mathbf{x}_i, \bigsqcup_{j \in \mathcal{N}_i} \psi(\mathbf{x}_j))$ learnable new feature of functions node i

Graph Neural Networks - layers

- Use a wide spectrum of input features
- Leverage representation learning
- Can combine graph and node level objective functions
- 4 months to a new prototype model progress towards production
 - Works on large datasets w/o overfit
 - Performs well on proprietary benchmark problems (predict drug, gene KO... treatments)

And there is more ahead...

Senior ML Engineer

Research

- Novel algorithms
- Custom layer design
- Graph ML
- Heavy biology domain

ML Ops Engineer Product

- Large scale training
- Prod ready code
- Overview full ML model lifecycle

Senior Bioinformatician Research

- Bio. data processing
- Dataset and metrics design
- Add domain knowledge to AI systems