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Hamilton is a paradigm that can help you:
1. Write features to run in multiple contexts.
2. Understand how features (& models) relate 

with lineage.
3. Keep your code organized/clean.

TL;DR:



At DAGWorks we’re making ML pipelines easy to manage.
Nobody should be afraid to inherit your code.

>>> I’m not selling you anything in this talk! <<<



         Hamilton is Open Source!!
I created it while at Stitch Fix: created 2019, OS’ed late 2021.

> pip install sf-hamilton

Get started in <15 minutes!

Try it out: https://www.tryhamilton.dev 

Documentation:  https://hamilton.readthedocs.io

Github: https://github.com/dagworks-inc/hamilton 
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Feature Engineering high level

Load 
Data

Transform 
into 

Features
Fit 

Model(s)
Use 

Model(s)

         Feature eng. training     inference

Data 
Warehouse Feature Store

E.g. E-commerce type scenario 
❏ Customers fill out onboarding

survey
❏ Your model makes predictions 

based on f(survey)

App 
Data
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Problems with Feature Engineering

Challenges:

1. SLAs & business context:
a. Batch vs stream vs real-time.

2. Training != Inference:
a. E.g. aggregations, stores to pull data from.

3. Observability / Understanding:
a. Teams x infra x (Data -> features -> model) connections is non-trivial.

TL;DR:  Portability: it’s hard to write a feature once  
                 Lineage: it’s hard to understand how it all connects
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Current Approaches 

Context-specific execution

Challenges:
- Multiple implementations
- Implementations x versions
- Do they match?
- Cumbersome to manage

                      Feature DSL to unify

Challenges:
- Single implementation
- Opinionated 
- DSL limits expressiveness and use 
- Requires platform team to 

manage
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Current Approaches 

Context-specific execution

Challenges:
- Multiple implementations
- Implementations x versions
- Do they match?
- Cumbersome to manage

                      Feature DSL to unify

Challenges:
- Single implementation
- Opinionated 
- DSL limits expressiveness and use 
- Requires platform team to 

manage

Q: Is there a solution in the middle?
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What is Hamilton?

paradigm for defining dataflows 
(e.g. feature eng.)

       SWE best practices: ✅ testing ✅ documentation
✅ modularity/reuse

                                             ✅ data quality ✅  lineage  



Problem:  Debugging features.

Idea 1: 
        What if every feature corresponded to exactly one python fn?

Idea 2: 
        What if you could determine the dependencies from the way that
        function was written?

In Hamilton, the feature (artifact) is determined by the name of the function. 
Dependencies for computation are determined by the input parameters.

Hamilton genesis: the “A-ha” Moment



Old Way vs Hamilton Way:
Instead of*

You declare
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df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

(Driver code not shown)



Instead of

You declare
Inputs == Function Arguments

Old Way vs Hamilton Way:

17

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

Outputs == Function Name

*Hamilton supports *all* python objects, not just dfs/series!



Full Hello World
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# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Sums a with b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Transforms C to ..."""
   new_column = _transform_logic(c)
   return new_column

# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd']) 
print(df_result)

Functions

Driver says what/when to execute

c

d

a b



Hamilton TL;DR:
1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution
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c

d

a b

# feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
   """Replaces c = a + b"""
   return a + b

def d(c: pd.Series) -> pd.Series:
   """Replaces d = transform(c)"""
   new_column = _transform_logic(c)
   return new_column

# run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, 
                   feature_logic)
df_result = dr.execute(['c', 'd']) 
print(df_result)



Decorators:
Syntactic sugar, and add extra expressiveness:
❏ @extract_columns # one dataframe -> multiple series
❏ @parameterize # curry + repeat a function
❏ @config.when # conditional - replaces ifs
❏ @check_output # runtime data validation
❏ @tag # attach metadata to transforms
❏ @subdag # recursively utilize groups of nodes
❏ @... # and more

Hamilton: Extending functionality
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Hamilton: Feature & Model pipelines

Load 
Data

Transform 
into 

Features
Fit 

Model(s)
Use 

Model(s)

         Feature eng. training     inference

Data 
Warehouse

Feature Store
E.g. FEAST

Hamilton can express all this!
But we’ll just focus on feature

          engineering for this talk.

App 
Data
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Portability: 

How to think about feature functions  with Hamilton:

Batch Streaming Online

Map functions Write once, run everywhere!

Aggregations Batch 
aggregation

Look up / 
windowed agg.

Look up fixed 
value

Joins Batch join Key-Value lookup Key-Value lookup

Majority of features are map based!
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Portability: 

How to think about feature functions  with Hamilton:

Batch Streaming Online

Map functions Write once, run everywhere!

Aggregations Batch 
aggregation

Look up / 
windowed agg.

Look up fixed 
value

Joins Batch join Key-Value lookup Key-Value lookup

You choose: store, compute on the fly, update regularly, etc…!
Reimplement only what you need!
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Portability: 

Let’s write some code; here’s our e-commerce scenario:
❏ Simple map operations

❏ raw survey data -> [budget, gender, age]
❏ derived features [is_high_roller, is_male, is_female]

❏ Joins
❏ time_since_last_login = f(client_id, login_data) 

❏ Aggregations
❏ normalized_age = g(mean(age), stddev(age))
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Batch feature engineering

Task
❏ Compute features for batch training (& inference)
Context
❏ DB table with raw survey results
❏ DB table with client login data
❏ Data is reasonable size [Hamilton can scale too]
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Data Loading

@extract_columns('budget', 'age', 'gender','client_id')

def survey_results(

       client: connection.Client,

       survey_results_table: str,

       survey_results_db: str) -> pd.DataFrame:

   """Connects to DB and returns table, from which we expose 4 columns."""

   return pd.read_sql(f"SELECT * FROM {survey_results_db}.{survey_results_table}",

          con=client)
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Data Loading
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Map functions

def is_male(gender: pd.Series) -> pd.Series:

return gender == 'male'

def is_female(gender: pd.Series) -> pd.Series:

return gender == 'female'

def is_high_roller(budget: pd.Series) -> pd.Series:

return budget > 1000

Derived features
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Map functions
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Joins

def client_login_data(

       client: connection.Client,

       client_data_table: str,

       client_data_db: str) -> pd.DataFrame:

   return pd.read_sql(f"SELECT * from {client_data_db}.{client_data_table}", con=client)

def last_logged_in(client_id: pd.Series, 

                   client_login_data: pd.DataFrame) -> pd.Series:

   return pd.merge(client_id, client_login_data, 

                   left_on='client_id')['last_logged_in']

def time_since_last_login(execution_time: datetime.datetime,

      last_logged_in: pd.Series) -> pd.Series:

   return execution_time - last_logged_in
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Joins
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Aggregations

def age_mean(age: pd.Series) -> float:
   return age.mean()

def age_stddev(age: pd.Series) -> float:
   return age.std()

def age_normalized(
      age: pd.Series, 
      age_mean: float, 
      age_stddev: float) -> pd.Series:
   return (age - age_mean)/age_stddev
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Aggregations
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Data Set Creation

def feature_set_v1(
   age_normalized: pd.Series,
   is_high_roller: pd.Series,
   is_male: pd.Series,
   is_female: pd.Series,
   time_since_last_login: pd.Series) -> pd.DataFrame:
   """V1 of our feature set."""
   return pd.DataFrame(...)

Note: you could also request this same feature set be created via the “driver”.
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Batch feature engineering for training & inference
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Driver

#etl.py

from project import load_data, map_features, join_features, agg_features, data_sets

model = …  # instantiate a model

target = … # pull target data …
# create the DAG

dr = driver.Driver({}, load_data, map_features, join_features, agg_features, data_sets) 

inputs = {

    "survey_results_table" : ..., 

    "survey_results_db" : ...,

    "execution_time" : datetime.datetime.now(), 

    "client_data_table" : ..., 

    "client_data_db": ...,

}

df = dr.execute(['feature_set_v1'], inputs=inputs)

model = model.fit(df, target) # or model.predict(df) … 
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Streaming / Real-time Features

Task
❏ Compute features for inference (or push to feature store)
Context
❏ Survey event comes in on a stream/request
❏ Have service to give client login data
❏ Have stored aggregations from training
Changes required
❏ Swap out nodes that load data
❏ Aggregation doesn’t make sense - use values from training
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E.g. for streaming context (real-time similar)

@config.when swap out features you need to change:

@extract_columns('budget', 'age', 'gender', 'client_id')
@config.when(mode='streaming')
def survey_results__streaming(survey_records: list[dict]) -> pd.DataFrame:
   return pd.DataFrame.from_records(survey_records)

@config.when(mode='streaming')
def last_logged_in__streaming(client_id: pd.Series, client: connection.Client) -> 
pd.Series:
   return pd.Series(client.query(ids=client_id.values()))

Note: our batch features 
should have 
a similar @config.when  
annotation
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E.g. for streaming context (real-time similar)

@config.when swap out features you need to change:

@config.when(mode='streaming')
def age_mean__streaming(client: connection.Client) -> float:
   return client.query('age_mean')

@config.when(mode='streaming')
def age_stddev__streaming(client: connection.Client) -> float:
   return client.query('age_stddev')

Note: our batch features 
should have 
a similar @config.when  
annotation
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Tying it together…
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Streaming Driver Code
# processor.py

from project import load_data, map_features, join_features, agg_features, data_set

config = {'mode' : 'streaming'}

dr = driver.Driver(config, 

                   load_data, map_features, join_features,agg_features, data_set)

model = load_model(...)

def process_records(records: list[dict]) -> list[float]:

    inputs = {

        "records" : records,

        "execution_time" : datetime.datetime.now(),

        "client" : some_client(),

    }

   df = dr.execute(['feature_set_v1'], inputs=inputs)

   return model.predict(df).values
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Real-time Driver Code
# app.py

from project import load_data, map_features, join_features, agg_features, data_set

app = … # webservice app

model_obj = … # load model somehow

config = {'mode' : 'real-time'}

dr = driver.AsyncDriver(config, 

                        load_data, map_features, join_features,agg_features, data_set)

@app.post("/predict")

async def predict(record: PredictRequest) -> float:

   inputs = {

        "records" : [record.to_dict()],

        "execution_time" : datetime.datetime.now(), 

        "client" : some_async_client(),

   }

   df = await dr.execute(['feature_set_v1'], inputs=inputs)

   return model.predict(df).values
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Lineage

Lineage definition:
     “historical record or traceability of data as it is transformed”

Why it’s important/useful:
❏ GDPR / compliance 
❏ Collaboration: 

❏ Debugging 
❏ Onboarding/offboarding

❏ Reducing outages / MTTR
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Lineage

Challenges
❏ Most people generally don’t have feature lineage.
❏ Requires extra systems & engineering effort.

Current solutions
❏ Open lineage + data hub.
❏ Manual documentation.



49Data Con 2021

but then there’s Hamilton: Lineage as Code

dr.visualize_execution(...) 
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Lineage as Code 

What you get with Hamilton
❏ Code defines how things connect → lineage
❏ Couple with git == lightweight lineage
❏ Couple with @tag == can ask questions of the DAG

Changes required
❏ None, apart from adding @tag to functions
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Lineage as Code 

What you can do with Hamilton
❏ E.g. Annotate with:

❏ PII, team, source, extra info, etc..

nodes = dr.what_is_downstream_of("age")

@tag(
   PII="true",
   source="prod.surveys",
   owner="data-engineering",
   importance="production",
   info="https://internal.wikipage.net/",
)
def my_func(...)

nodes = dr.what_is_upstream_of("model")
sources = [n for n in nodes if nodes.tags.get("source")...]

Questions you can answer
❏ Who owns this feature?
❏ How is feature X computed?
❏ Where is age used?
❏ What sources did I train on?

dr.visualize_execution(["X"], ...)
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Summary: write Hamilton functions
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# client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
                                   height_std_dev: pd.Series) -> pd.Series:
   """Zero mean unit variance value of height"""
   return height_zero_mean / height_std_dev

And you get…
● Portability/modularity/reuse ✅ module curation & decoupled 

            drivers; extensibility & decorators
● Lineage as code ✅ know how code & data relate
● Unit & Integration testing ✅ always possible, straightforward
● Documentation ✅ tags, lineage, function doc
● Data quality ✅ runtime checks
● Feature definition catalog ✅ naming, curation, versioning
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OS Progress
~1.4K+ Unique Stargazers
   150+ slack members
    72K+ downloads

OS used by lots of companies like:



OS Roadmap
A few things we’re thinking about: 
❏ Hamilton compile -> orchestration system

❏ E.g. Hamilton -> Airflow

❏ Generator support for mini-batch processing large datasets
❏ Extending pyspark integration beyond map functions.
❏ Connectors to common MLOps tools
❏ <Your idea here!>
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Give Hamilton a Try! We’d Love Your Feedback.
www.tryhamilton.dev 
> pip install sf-hamilton
⭐ on github (https://github.com/dagworks-inc/hamilton)

☑ create & vote on issues on github
📣 join us on on Slack 
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http://www.tryhamilton.dev
https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg


Kösz!
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk

https://github.com/dagworks-inc/hamilton

stefan@dagworks.io

https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk
https://github.com/dagworks-inc/hamilton
mailto:stefan@dagworks.io

