
Feature Engineering
with Hamilton:

Stefan Krawczyk
CEO/Co-founder DAGWORKS

Portability & Lineage

Hamilton is a paradigm that can help you:
1. Write features to run in multiple contexts.
2. Understand how features (& models) relate

with lineage.
3. Keep your code organized/clean.

TL;DR:

At DAGWorks we’re making ML pipelines easy to manage.
Nobody should be afraid to inherit your code.

>>> I’m not selling you anything in this talk! <<<

 Hamilton is Open Source!!
I created it while at Stitch Fix: created 2019, OS’ed late 2021.

> pip install sf-hamilton

Get started in <15 minutes!

Try it out: https://www.tryhamilton.dev

Documentation: https://hamilton.readthedocs.io

Github: https://github.com/dagworks-inc/hamilton

4

https://www.tryhamilton.dev
https://hamilton.readthedocs.io/
https://github.com/dagworks-inc/hamilton

https://www.tryhamilton.dev

https://www.tryhamilton.dev/

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

8Data Con 2021

Feature Engineering high level

Load
Data

Transform
into

Features
Fit

Model(s)
Use

Model(s)

 Feature eng. training inference

Data
Warehouse Feature Store

E.g. E-commerce type scenario
❏ Customers fill out onboarding

survey
❏ Your model makes predictions

based on f(survey)

App
Data

9Data Con 2021

Problems with Feature Engineering

Challenges:

1. SLAs & business context:
a. Batch vs stream vs real-time.

2. Training != Inference:
a. E.g. aggregations, stores to pull data from.

3. Observability / Understanding:
a. Teams x infra x (Data -> features -> model) connections is non-trivial.

TL;DR: Portability: it’s hard to write a feature once
 Lineage: it’s hard to understand how it all connects

10Data Con 2021

Current Approaches

Context-specific execution

Challenges:
- Multiple implementations
- Implementations x versions
- Do they match?
- Cumbersome to manage

 Feature DSL to unify

Challenges:
- Single implementation
- Opinionated
- DSL limits expressiveness and use
- Requires platform team to

manage

11Data Con 2021

Current Approaches

Context-specific execution

Challenges:
- Multiple implementations
- Implementations x versions
- Do they match?
- Cumbersome to manage

 Feature DSL to unify

Challenges:
- Single implementation
- Opinionated
- DSL limits expressiveness and use
- Requires platform team to

manage

Q: Is there a solution in the middle?

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

What is Hamilton?

paradigm for defining dataflows
(e.g. feature eng.)

 SWE best practices: ✅ testing ✅ documentation
✅ modularity/reuse

 ✅ data quality ✅ lineage

What is Hamilton?

paradigm for defining dataflows
(e.g. feature eng.)

 SWE best practices: ✅ testing ✅ documentation
✅ modularity/reuse

 ✅ data quality ✅ lineage

Problem: Debugging features.

Idea 1:
 What if every feature corresponded to exactly one python fn?

Idea 2:
 What if you could determine the dependencies from the way that
 function was written?

In Hamilton, the feature (artifact) is determined by the name of the function.
Dependencies for computation are determined by the input parameters.

Hamilton genesis: the “A-ha” Moment

Old Way vs Hamilton Way:
Instead of*

You declare

16

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

(Driver code not shown)

Instead of

You declare
Inputs == Function Arguments

Old Way vs Hamilton Way:

17

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

*Hamilton supports *all* python objects, not just dfs/series!

Full Hello World

18

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

c

d

a b

Hamilton TL;DR:
1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution

19

c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Decorators:
Syntactic sugar, and add extra expressiveness:
❏ @extract_columns # one dataframe -> multiple series
❏ @parameterize # curry + repeat a function
❏ @config.when # conditional - replaces ifs
❏ @check_output # runtime data validation
❏ @tag # attach metadata to transforms
❏ @subdag # recursively utilize groups of nodes
❏ @... # and more

Hamilton: Extending functionality

21Data Con 2021

Hamilton: Feature & Model pipelines

Load
Data

Transform
into

Features
Fit

Model(s)
Use

Model(s)

 Feature eng. training inference

Data
Warehouse

Feature Store
E.g. FEAST

Hamilton can express all this!
But we’ll just focus on feature

 engineering for this talk.

App
Data

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

23Data Con 2021

Portability:

How to think about feature functions with Hamilton:

Batch Streaming Online

Map functions Write once, run everywhere!

Aggregations Batch
aggregation

Look up /
windowed agg.

Look up fixed
value

Joins Batch join Key-Value lookup Key-Value lookup

Majority of features are map based!

24Data Con 2021

Portability:

How to think about feature functions with Hamilton:

Batch Streaming Online

Map functions Write once, run everywhere!

Aggregations Batch
aggregation

Look up /
windowed agg.

Look up fixed
value

Joins Batch join Key-Value lookup Key-Value lookup

You choose: store, compute on the fly, update regularly, etc…!
Reimplement only what you need!

25Data Con 2021

Portability:

Let’s write some code; here’s our e-commerce scenario:
❏ Simple map operations

❏ raw survey data -> [budget, gender, age]
❏ derived features [is_high_roller, is_male, is_female]

❏ Joins
❏ time_since_last_login = f(client_id, login_data)

❏ Aggregations
❏ normalized_age = g(mean(age), stddev(age))

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

27Data Con 2021

Batch feature engineering

Task
❏ Compute features for batch training (& inference)
Context
❏ DB table with raw survey results
❏ DB table with client login data
❏ Data is reasonable size [Hamilton can scale too]

28Data Con 2021

Data Loading

@extract_columns('budget', 'age', 'gender','client_id')

def survey_results(

 client: connection.Client,

 survey_results_table: str,

 survey_results_db: str) -> pd.DataFrame:

 """Connects to DB and returns table, from which we expose 4 columns."""

 return pd.read_sql(f"SELECT * FROM {survey_results_db}.{survey_results_table}",

 con=client)

29Data Con 2021

Data Loading

30Data Con 2021

Map functions

def is_male(gender: pd.Series) -> pd.Series:

return gender == 'male'

def is_female(gender: pd.Series) -> pd.Series:

return gender == 'female'

def is_high_roller(budget: pd.Series) -> pd.Series:

return budget > 1000

Derived features

31Data Con 2021

Map functions

32Data Con 2021

Joins

def client_login_data(

 client: connection.Client,

 client_data_table: str,

 client_data_db: str) -> pd.DataFrame:

 return pd.read_sql(f"SELECT * from {client_data_db}.{client_data_table}", con=client)

def last_logged_in(client_id: pd.Series,

 client_login_data: pd.DataFrame) -> pd.Series:

 return pd.merge(client_id, client_login_data,

 left_on='client_id')['last_logged_in']

def time_since_last_login(execution_time: datetime.datetime,

 last_logged_in: pd.Series) -> pd.Series:

 return execution_time - last_logged_in

33Data Con 2021

Joins

34Data Con 2021

Aggregations

def age_mean(age: pd.Series) -> float:
 return age.mean()

def age_stddev(age: pd.Series) -> float:
 return age.std()

def age_normalized(
 age: pd.Series,
 age_mean: float,
 age_stddev: float) -> pd.Series:
 return (age - age_mean)/age_stddev

35Data Con 2021

Aggregations

36Data Con 2021

Data Set Creation

def feature_set_v1(
 age_normalized: pd.Series,
 is_high_roller: pd.Series,
 is_male: pd.Series,
 is_female: pd.Series,
 time_since_last_login: pd.Series) -> pd.DataFrame:
 """V1 of our feature set."""
 return pd.DataFrame(...)

Note: you could also request this same feature set be created via the “driver”.

37Data Con 2021

Batch feature engineering for training & inference

38Data Con 2021

Driver

#etl.py

from project import load_data, map_features, join_features, agg_features, data_sets

model = … # instantiate a model

target = … # pull target data …
create the DAG

dr = driver.Driver({}, load_data, map_features, join_features, agg_features, data_sets)

inputs = {

 "survey_results_table" : ...,

 "survey_results_db" : ...,

 "execution_time" : datetime.datetime.now(),

 "client_data_table" : ...,

 "client_data_db": ...,

}

df = dr.execute(['feature_set_v1'], inputs=inputs)

model = model.fit(df, target) # or model.predict(df) …

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

40Data Con 2021

Streaming / Real-time Features

Task
❏ Compute features for inference (or push to feature store)
Context
❏ Survey event comes in on a stream/request
❏ Have service to give client login data
❏ Have stored aggregations from training
Changes required
❏ Swap out nodes that load data
❏ Aggregation doesn’t make sense - use values from training

41Data Con 2021

E.g. for streaming context (real-time similar)

@config.when swap out features you need to change:

@extract_columns('budget', 'age', 'gender', 'client_id')
@config.when(mode='streaming')
def survey_results__streaming(survey_records: list[dict]) -> pd.DataFrame:
 return pd.DataFrame.from_records(survey_records)

@config.when(mode='streaming')
def last_logged_in__streaming(client_id: pd.Series, client: connection.Client) ->
pd.Series:
 return pd.Series(client.query(ids=client_id.values()))

Note: our batch features
should have
a similar @config.when
annotation

42Data Con 2021

E.g. for streaming context (real-time similar)

@config.when swap out features you need to change:

@config.when(mode='streaming')
def age_mean__streaming(client: connection.Client) -> float:
 return client.query('age_mean')

@config.when(mode='streaming')
def age_stddev__streaming(client: connection.Client) -> float:
 return client.query('age_stddev')

Note: our batch features
should have
a similar @config.when
annotation

43Data Con 2021

Tying it together…

44Data Con 2021

Streaming Driver Code
processor.py

from project import load_data, map_features, join_features, agg_features, data_set

config = {'mode' : 'streaming'}

dr = driver.Driver(config,

 load_data, map_features, join_features,agg_features, data_set)

model = load_model(...)

def process_records(records: list[dict]) -> list[float]:

 inputs = {

 "records" : records,

 "execution_time" : datetime.datetime.now(),

 "client" : some_client(),

 }

 df = dr.execute(['feature_set_v1'], inputs=inputs)

 return model.predict(df).values

45Data Con 2021

Real-time Driver Code
app.py

from project import load_data, map_features, join_features, agg_features, data_set

app = … # webservice app

model_obj = … # load model somehow

config = {'mode' : 'real-time'}

dr = driver.AsyncDriver(config,

 load_data, map_features, join_features,agg_features, data_set)

@app.post("/predict")

async def predict(record: PredictRequest) -> float:

 inputs = {

 "records" : [record.to_dict()],

 "execution_time" : datetime.datetime.now(),

 "client" : some_async_client(),

 }

 df = await dr.execute(['feature_set_v1'], inputs=inputs)

 return model.predict(df).values

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

47Data Con 2021

Lineage

Lineage definition:
 “historical record or traceability of data as it is transformed”

Why it’s important/useful:
❏ GDPR / compliance
❏ Collaboration:

❏ Debugging
❏ Onboarding/offboarding

❏ Reducing outages / MTTR

48Data Con 2021

Lineage

Challenges
❏ Most people generally don’t have feature lineage.
❏ Requires extra systems & engineering effort.

Current solutions
❏ Open lineage + data hub.
❏ Manual documentation.

49Data Con 2021

but then there’s Hamilton: Lineage as Code

dr.visualize_execution(...)

50Data Con 2021

Lineage as Code

What you get with Hamilton
❏ Code defines how things connect → lineage
❏ Couple with git == lightweight lineage
❏ Couple with @tag == can ask questions of the DAG

Changes required
❏ None, apart from adding @tag to functions

51Data Con 2021

Lineage as Code

What you can do with Hamilton
❏ E.g. Annotate with:

❏ PII, team, source, extra info, etc..

nodes = dr.what_is_downstream_of("age")

@tag(
 PII="true",
 source="prod.surveys",
 owner="data-engineering",
 importance="production",
 info="https://internal.wikipage.net/",
)
def my_func(...)

nodes = dr.what_is_upstream_of("model")
sources = [n for n in nodes if nodes.tags.get("source")...]

Questions you can answer
❏ Who owns this feature?
❏ How is feature X computed?
❏ Where is age used?
❏ What sources did I train on?

dr.visualize_execution(["X"], ...)

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

Summary: write Hamilton functions

53

client_features.py
@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def height_zero_mean_unit_variance(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

And you get…
● Portability/modularity/reuse ✅ module curation & decoupled

 drivers; extensibility & decorators
● Lineage as code ✅ know how code & data relate
● Unit & Integration testing ✅ always possible, straightforward
● Documentation ✅ tags, lineage, function doc
● Data quality ✅ runtime checks
● Feature definition catalog ✅ naming, curation, versioning

Problems with feature engineering
The solution: Hamilton
Portability:

↳ Batch
↳ Streaming / Real-time

Lineage as Code
Summary & additional benefits of Hamilton
OS progress/updates

The Agenda

OS Progress
~1.4K+ Unique Stargazers
 150+ slack members
 72K+ downloads

OS used by lots of companies like:

OS Roadmap
A few things we’re thinking about:
❏ Hamilton compile -> orchestration system

❏ E.g. Hamilton -> Airflow

❏ Generator support for mini-batch processing large datasets
❏ Extending pyspark integration beyond map functions.
❏ Connectors to common MLOps tools
❏ <Your idea here!>

56

Give Hamilton a Try! We’d Love Your Feedback.
www.tryhamilton.dev
> pip install sf-hamilton
⭐ on github (https://github.com/dagworks-inc/hamilton)

☑ create & vote on issues on github
📣 join us on on Slack

57

http://www.tryhamilton.dev
https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Kösz!
Questions?

https://twitter.com/stefkrawczyk

https://www.linkedin.com/in/skrawczyk

https://github.com/dagworks-inc/hamilton

stefan@dagworks.io

https://twitter.com/stefkrawczyk
https://www.linkedin.com/in/skrawczyk
https://github.com/dagworks-inc/hamilton
mailto:stefan@dagworks.io

