ML algorithms for product recommendations

Sergei Bulaev

Senior Data Scientist

Epam Systems

June 2023

About me

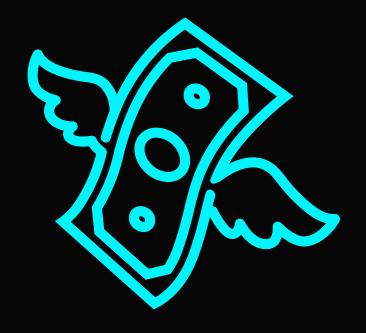
- Senior Data Scientist at EPAM Systems
- 5+ years in Data Science
- MSc Master of Data Science

Agenda

- 1. Current challenges
- 2. Potentional solution
- 3. Benchmarks on H&M dataset

Current challenges

Challenges. Price of a wrong prediction



Challenges. Price of a wrong prediction

Challenges. Price of a wrong prediction

We are in a risk-free zone

Challenges. Goals

<A Review of Modern Fashion Recommender Systems>

1. Outfit generation

2. Outfit recommendation

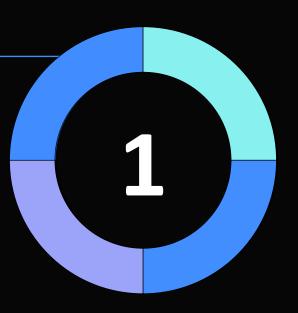
3. Outfit compatibility prediction

4. Fill In the blank

5. Pair recommendation

Challenges. Modeling

Reproducibility of results



Reproducibility of results

<Are We Really Making Much Progress?>*

Conference	Rep. ratio	Reproducible
KDD	3/4 (75%)	[17], [23], [48]
RecSys	1/7 (14%)	[53]
SIGIR	1/3 (30%)	[10]
WWW	2/4 (50%)	[14], [24]

Total: 7/18 (39%)

Challenges. Modeling

Reproducibility of results

Absence of a strong baseline

Absence of a strong baseline

< Revising the Performance of IALS on the Item</p> Recommendation Benchmarks >*

Dataset	Method	Recall@20	
	RecVAE [25]	0.414	
	H+Vamp (Gated) [14]	0.413	
	RaCT [18]	0.403	
	Mult-VAE [17]	0.395	
	LambdaNet [4]	0.395	
	iALS	0.395	
ML20M	EASE [26]	0.391	
MLZUM	CDAE [28]	0.391	
	Mult-DAE [17]	0.387	
	SLIM [19]	0.370	
	iALS	0.363	
	iALS	0.360	
	WARP [27]	0.314	
	Popularity	0.162	

Challenges. Modeling

Reproducibility of results

Absence of a strong baseline

Corr(online, offline) metrics

Corr(online, offline) metrics

< Off-line vs. On-line Evaluation</p> of Recommender Systems in Small E-commerce >*

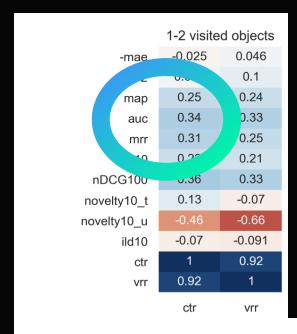


Figure 3: Spearman's correlation between off-line and on-line evaluation metrics for various user model sizes.

Challenges. Modeling

Reproducibility of results

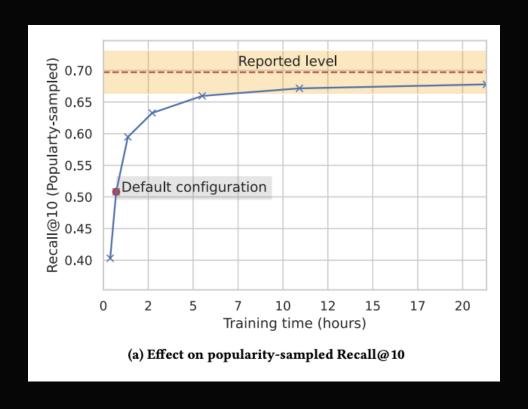
Long retraining time

Absence of a strong baseline

Corr(online, offline) metrics

Long retraining time

< A Systematic Review and Replicability</p> Study of BERT4Rec for Sequential Recommendation >*



Solution

df.groupby(product_id)[sold_units].sum()

feature_list = [product_id, gender, age, region, segment]
 df.groupby(feature_list)[sold_units].sum()

• df = df filter by 2 previous weeks feature_list = [product_id, gender, age, region, segment] df.groupby(feature_list)[sold_units].sum()

Customer put the product into the basket.

Filter users who bought the current product

df = df filter by 2 previous weeks

feature_list = [product_id, gender, age, region, segment]

df.groupby(feature_list)[sold_units].sum()

Mix recommendations with repurchase ratio

Filter users who bought the current product

df = df filter by 2 previous weeks

feature_list = [product_id, gender, age, region, segment]

df.groupby(feature_list)[sold_units].sum()

Personalised Popular Product

Collaborative filtering

Quadratic loss function $L(W, H) = L_s(W, H) + L_l(W, H) + R(W, H)$

$$L(W, H) = L_S(W, H) + L_I(W, H) + R(W, H)$$

$$\sum_{(y,i)\in S} (\hat{y}(y,i) - 1)^2$$

$$\alpha_0 \sum_{u \in U} \sum_{i \in I} (\hat{\mathbf{y}}(u, i))^2$$

$$\sum_{(u,i)\in S} \left(\hat{\mathbf{y}} \left(\mathbf{y}, i \right) - 1 \right)^2 \qquad \qquad \boxed{\alpha_0} \sum_{u \in U} \sum_{i \in I} (\hat{\mathbf{y}}(u,i))^2 \qquad \qquad \boxed{\lambda} \sum_{u \in U} \frac{v}{u} |w_u|^2 + \sum_{i \in I} \frac{v}{i} |h_i|^2)$$

Deploy it & & Generate profit

Thank you!

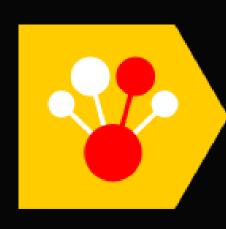
Sergei Bulaev

Senior Data Scientist

But there is no

AI (Artificial Intelligence)
Neural Networks
Deep Learning
Machine learning

LightGBM



Yandex Catboost

Advanced recommendation system

Candidate generation Features generation **Users behaviour Personalised Popular Product Items sales** performance **Collaborative Items similarity** filtering **Aggregative statistics**

- Build the process
- Gain an experience
- Build relationships
- Gather the right data
- Gain Trust
- Cover most of business lines
- Generating profit

Enjoy the research

Advanced recommendation system

NFM GRU4Rec MultiVAE

GCN DiffuRec

SLIM

SHAN

SASREC xDeepFM

ChatGPT LightGCN

BERT4Rec

Comparison

H&M recommendation system challenge dataset

We are given a dataset consisting of 3 tables and a folder with pictures.

Customers

Products

Transactions

Pictures of H&M assortment

1 371 980 unique customers

105 542 unique products

31 788 324 transactions

30 GB of pictures

Target:

To predict what articles each customer will purchase in the 7-day period

Evaluation Metric:

Mean Average Precision MAP@12

Key results

Applied models for recommendation systems

Recommendation algorithms

Popularity based

- Most popular (year, month, season, week, age)
- Pairing purchaised items
- Repurchase products by customers

MAP@12

0.027

Collaborative filtering

- ALS
- SVD
- FunkySVD
- FM

Hybrid models

- LightFM
- ALS with features

Graph based

- GCN
- LightGCN
- Fi-GNN
- GRU4Rec
- SHAN

Tree based

- LightGBM
- CatBoost

MAP@12

0.024

MAP@12

0.021

MAP@12

0.028

MAP@12

0.032

Key TakeAway

Simple and Fast Business results, Rather than State Of The Art Models

Thank you!

Sergei Bulaev

Senior Data Scientist



