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Current challenges
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Challenges. Price of a wrong prediction
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Challenges. Price of a wrong prediction

<epam>



Challenges. Price of a wrong prediction
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We are in a risk-free zone
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Challenges. Goals

<A Review of Modern Fashion Recommender Systems>

1. Outfit generation 2. Outfit recommendation

3. Outfit compatibility prediction 4. Fill In the blank

* https://arxiv.org/pdf/2207.02757.pdf
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Challenges. Modeling

Reproducibility of results
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Reproducibility of results

<Are We Really Making Much Progress?>*

Conference Rep.ratio Reproducible

KDD 3/4(75%)  [17], [23], [48]
RecSys 1/7 (14%)
SIGIR 1/3 (30%)
WWW 2/4 (50%)

Total: 7/ 18 (39%)

* https://arxiv.org/pdf/2211.01261.pdf
<epam>

11



Challenges. Modeling

Reproducibility of results Absence of a strong baseline
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Absence of a strong baseline

< Revising the Performance of IALS on the Item

Recommendation Benchmarks >*

Method

RecVAE [25]
H+Vamp (Gated) [14]
RaCT [18]

| Mult-VAE [17]

| LambdaNet [4]
iALS

EASE [26]

ML20M | CDAE [28]

| Mult-DAE [17]

| SLIM [19]
iALS
iALS

| WARP [27]
Popularity

* https://arxiv.org/pdf/2110.14037.pdf
<epam > EPAM Proprietary & Confidential. 13



Challenges. Modeling

Reproducibility of results Absence of a strong baseline

Corr(online, offline) metrics
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Corr(online, offline) metrics
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< Off-line vs. On-line Evaluation

of Recommender Systems in Small E-commerce >*
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Figure 3: Spearman’s correlation between off-line and on-line evaluation metrics for various user model sizes.

* https://arxiv.org/pdf/1809.03186.pdf

EPAM Proprietary & Confidential.
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Challenges. Modeling

Reproducibility of results Absence of a strong baseline

a4

Long retraining time Corr(online, offline) metrics
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Long retraining time

< A Systematic Review and Replicability

Study of BERT4Rec for Sequential Recommendation >*

Default configuration
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(a) Effect on popularity-sampled Recall@10

* https://arxiv.org/pdf/2207.07483.pdf
<epam>
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Solution

< epam > EPAM Proprietary & Confidential. 18



Basic recommendation system

df.groupby(product id)[sold units].sum()

<epam> Usually considered as a baseline in scientific articles



Basic recommendation system

@ feature_list = [product _id, gender, age, region, segment]
df.groupby(feature list)[sold units].sum()
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Basic recommendation system

@ df = df filter by 2 previous weeks
feature list = [product id, gender, age, region, segment]
df.groupby(feature_list)[sold units].sum()
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Basic recommendation system

@ Filter users who bought the current product
df = df filter by 2 previous weeks

feature list = [product id, gender, age, region, segment]
df.groupby(feature_list)[sold units].sum()
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Basic recommendation system

@ Mix recommendations with repurchase ratio
Filter users who bought the current product
df = df filter by 2 previous weeks

feature list = [product id, gender, age, region, segment]
df.groupby(feature_list)[sold units].sum()
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Basic recommendation system

Personalised Popular Product
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Basic recommendation system

Collaborative filtering
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Basic recommendation system

Quadratic loss function
L(W, H) = Li(W, H) + L (W, H) + R(W, H)
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Basic recommendation system

L(EI = L(W, H) + L(W, H) + R(W, H)
> (3(n) - 1) soaor [l Ehaes s
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Deploy it
&

Generate profit
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Thank you!

Sergei Bulaev

Senior Data Scientist

< epam > EPAM Proprietary & Confidential. 29
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But there is no

Al (Artificial Intelligence)
Neural Networks
Deep Learning
Machine learning



-4 LightGBM

Yandex
Catboost

EPAM Proprietary & Confidential. 31



Advanced recommendation system

<epam>

Features generation

Users behaviour

Items sales
performance

Aggregative

statistics

Candidate generation

Personalised Popular
Product

Collaborative
filtering

b e o s e e o e e e e e e e R M e e M M e e M e e e
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Build the process
Gain an experience
Build relationships
Gather the right data
Gain Trust

Cover most of business lines
Generating profit

Enjoy the research

<epam>

AM Proprietary & Confidential. 33



Advanced recommendation system

NEM MultiVAE GCN

GRU4Rec DiffuRec
SLIM SHAN
SASREC ChatGPT
xDeepFM LightGCN

BERT4Rec



Comparison

< epam > EPAM Proprietary & Confidential. 35



H&M recommendation system challenge dataset

We are given a dataset consisting of 3 tables and a folder with pictures.

Customers Products T e e Pictures of H&M
assortment

1 371 980 105 542 31 788 324 30 GB
unique customers unique products transactions of pictures
UEITeLL: Evaluation Metric:

To predict what articles each
customer will purchase
in the 7-day period

Mean Average Precision MAP@12

<epam>



Key results

Applied models for recommendation systems

[ Popularity based }

Most popular (year, month,

season, week, age)
Pairing purchaised items
Repurchase products by
customers

MAP@12
0.027

<epam>

Recommendation

algorithms

|

Collaborative

} [Hybrid models} [Graph based } [ Tree based J

|

filtering
« ALS » LightFM
« SVD * ALS with
* FunkySVD features
« FM
MAP@12 MAP@12
0.024 0.021

GCN * LightGBM
LightGCN « CatBoost
Fi-GNN

GRU4Rec

SHAN

J

MAP@12 MAP@12
0.028 0.032

EPAM Proprietary & Confidential. 37



Key TakeAway
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Simple and Fast Business results,
Rather than
State Of The Art Models
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Thank you!
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