
Incremental Adoption of Spark Dask and Ray

Kevin Kho
Jun 8, 2023 @ Budapest Data Forum

Agenda

● Why incremental adoption?

● What prevent incremental adoption?

● How Fugue helps? (Python API and Fugue SQL)

Why Incremental Adoption?

Needs for Distributed Computing

Data

Needs for Distributed Computing

How to migrate existing
code to these frameworks
that have different syntax?

Incrementally moving portions of workloads that can truly
benefit from additional resources

● Training several machine learning models in parallel

● Expensive feature engineering

● Data preprocessing and sampling

● …

Benefits of Incremental Adoption

● Can reduce all-in risk, be more cost effective

● Can minimize the adoption effort to achieve business objectives

● Can be more flexible on technical decisions

● …

What Prevents Incremental Adoption?

An example case

● For each uid, replace each numeric column with its z score over the timestamp

Scaling out the Pandas solution

● False Belief 1: Zero Rewrite Works
● False Belief 2: Full Rewrite == Best Performance

False Belief 1: Zero Rewrite Works

● ❌The drop-in replacement solutions will let us fully adopt distributed systems
without rewrite

● ❌The performance will be the local performance * cluster size

Pandas on Spark

Pandas on Spark (remove sort)

Drop In replacement cannot be 100% consistent with the original solution.

Rewrite to make it work

Suboptimal Performance

A better implementation on spark can be 10x faster.

False Belief 2: Full Rewrite == Best Performance

● ❌Whatever a distributed framework provides, we should try to leverage,
because they will yield the best performance

Rewrite to bypass Python and Pandas

Suboptimal Performance

The most native solution is not necessarily the best.

What we learned from the above examples

 Drop-in replacement != Zero effort migration

 Semantic consistency != Optimal performance

 Full rewrite != Best performance

How Fugue Helps?
 — Python API and Fugue SQL

What does Fugue do?

Local Python Environment

What does Fugue do?

Thin Wrapper

Local Python Environment

Scaling out the Pandas solution

Scaling out the Pandas solution (Coarse)

Performance Comparison

How to move one step to Spark/Ray?

Why Fugue?

● The core computing logic can remain untouched

● The migration is always reversible

● Existing unit/integration tests can still work

● The iterations will be faster

● The workflow becomes scale and platform agnostic

The Full Picture of Fugue Backends

In progress

Fugue SQL Fugue API

Incremental SQL Development

A Complex SQL (TPC-DS #78)

A

B

C

D

A B C

D

Why SQL development is hard

● How to iterate on each individual step?

● If it is slow, what is the cause?

● How to test?

Remove CTE and break up steps (sample to local)

Remove CTE and break up steps (to file)

Switch to local development

Assemble the final SQL

Local Development

The Whole Process

A B C

D

Test SQL

Key Takeaways

B
us

in
es

s
G

ai
n

Adoption Effort

Strategical incremental adoption to maximize business gain

Thank You
https://github.com/fugue-project/fugue

https://github.com/fugue-project/fugue

