

Real-time applications of Computer Vision in Logistics

Dr. David Zibriczky | Budapest ML Forum | June 2023

DB Schenker is a global company providing third party logistics service in Air/Ocean/Land Freight and Warehousing

(1) Adjusted for FX(2) in 2021

Agenda for this presentation

Photos: Schenker AG

DB SCHENKER | Dr. David Zibriczky | Global Data Strategy & Analytics | June 2023

License plate and ILU code recognition

Management of arriving/departing trucks at warehouses is usually a manual process

- Warehouse is a hub for collecting and distributing goods in the supply chain
- Used by manufacturers, importers, exporters, wholesalers

- Vehicles enter and leave the yard of the warehouse via entry and exit gate, they are recognized by license plate and ILU code
- Vehicles are routed to the warehouse gate to unload and load cargo

- Registering and routing vehicles are timeconsuming work
- License plates are often registered manually on paper, that may include to typing error as well

Use Case: Recognize and report License Plate and ILU codes of arriving and departing vehicles at the entrance gate of a selected DB Schenker terminal, so that the Yard Management can register, route, and track the traffic automatically.

Photos: Schenker AG

We installed 5 cameras at a Pilot Branch in Germany that are collecting data from multiple angles at the entry gate

Camera selection

2 x AXIS P1455-LE 2 x AXIS M2025-LE 1 x AXIS Q1700-LE

Camera installation

Entry and exit Truck front and back Side of truck

Source: AXIS P1455-LE Network Camera, https://www.axis.com/de-de/products/axis-p1455-le [Last Access on 01.06.2023]; pictures from Google Maps, https://www.google.de/maps [Last Access on 01.06.2023]; own photos.

We define an object detection problem of trucks, license plates, and ILU codes

Photos: Schenker AG

For vehicle/text detection, we consider extended CNN architectures with proposal generation and classification

Source: Understanding Deep Convolutional Neural Networks, <u>https://guides.run.ai/deep-learning-for-computer-vision/deep-convolutional-neural-networks</u> [Last Access on 05.06.2023]; YOLO object detection with OpenCV, <u>https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/</u> [Last Access on 05.06.2023].

Out of the investigated object detectors, the clear winner is YOLOX-m with fast runtime on RTX 3090 and Tesla V100

Experimental procedure:

- Annotation with Computer Vision Annotation Tool (CVAT)
- Train and test set: 5023 and 2043 images
- Open-source algorithms tested¹: **HTC**, **YOLOv3**, **YOLOX**
- Evaluation metrics: **Precision, Recall** and **Runtime**
- Latency measured on various hardware
- Additional detectors to consider¹: YOLOv7, YOLO-NAS

Key findings:

- YOLOX-m detector is our favorite due to high accuracy and acceptable runtime
- Training of YOLOX-m took 19 hours
- Embedded boards are not suitable for real-time service
- Server with one/two GPUs can serve all cameras simultaneously

Recall of detectors per object type

Detector	Truck	LP	ILU	Ignored Vehicles	All
НТС	98.76%	97.65%	89.52%	92.31%	97.60%
YOLOv3	96.58%	87.23%	90.32%	84.62%	95.32%
YOLOX-s	92.96%	98.66%	98.39%	92.31%	95.32%
YOLOX-m	98.14%	98.82%	98.39%	92.31%	98.31%

Runtime of detectors per GPU

Detector	Jetson Nano	Jetson TX2	Jetson Xavier	GeForce 3060	GeForce 3090	Tesla T4	Tesla V100
HTC	N/A	4775ms	1286 ms	371 ms	145 ms	423 ms	208 ms
YOLOv3	N/A	282 ms	89 ms	44 ms	30 ms	34 ms	23 ms
YOLOX-s	614 ms	114 ms	46 ms	30 ms	15 ms	12 ms	13 ms
YOLOX-m	1368 ms	244 ms	75 ms	35 ms	18 ms	26 ms	17 ms

(1) Source of Detectors: HTC, https://arxiv.org/abs/1901.07518v2 [Last Access on 05.06.2023]; YOLOv3, https://arxiv.org/abs/1804.02767 [Last Access on 05.06.2023]; YOLOX, https://arxiv.org/abs/2107.08430 [Last Access on 05.06.2023]; YOLOv7, https://arxiv.org/abs/2207.02696 [Last Access on 05.06.2023]; YOLO-NAS, https://deci.ai/blog/yolo-nas-object-detection-foundation-model/ [Last Access on 05.06.2023].

We define a 3-step text recognition task: cropping text box, recognizing characters, and validating the result

Focus on Text Recognition

Photos: Schenker AG; German License Plate Format & City/Region Codes, https://www.customeuropeanplates.com/german-license-plate-codes [Last Access on 05.06.2023]; ILU-Code - Calculate the check digit, https://www.customeuropeanplates.com/german-license-plate-codes [Last Access on 05.06.2023]; ILU-Code - Calculate the check digit, https://www.ilu-code.eu/en/calculate-the-check-digit [Last Access 05.06.2023].

Text recognizers combine convolutional feature extraction and recurrent network-based sequential modeling

Source: CRNN: Convolutional-Recurrent Neural Network: M. Ameryan and L. Schomaker: <u>A limited-size ensemble of homogeneous CNN/LSTMs for high-performance word classification</u>, in: Neural Computing and Applications 33 (2021); C. Bartz, H. Yang & C. Meinel: SEE: Towards Semi-Supervised End-to-End Scene Text Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1) (2018), <u>https://doi.org/10.1609/aaai.v32i1.12242</u> [Last Access on 05.06.2023].

DB SCHENKER | Dr. David Zibriczky | Global Data Strategy & Analytics | June 2023

We evaluated several text recognizers and measured their performance

Experimental Phase Accuracy Per Runtime Runtime **Text Recognizer¹** Tesla T4 [ms] RTX 3060 [ms] Image SATRN-1 96.4% 165 384 NRTR 91.9% 238 521 RobustScanner 90.3% 82 76 SAR 88.6% 130 96 SATRN-m 85.2% 147 306 SATRN-s 82.8% 84 162 CRNN 41.1% 7 7 **CRNN-TPS** 40.8% 8 10

Details:

- Trained on 4773 images, tested on 1360 images
- Measured accuracy per ILU and LP images
- Measured runtime on Tesla T4 and GeForce RTX 3060

Fine-tuning and Evaluation on Edge

Takeaways:

- Most of the text recognizers are slower than 24 FPS (42 ms)
- SATRN-1 has the highest accuracy
- RobustScanner has the best runtime/accuracy tradeoff

Parameter fine-tuning:

- The training of RobustScanner took 2 hours
- Deployed on NVIDIA Ampere A40
- Accuracy of License Plates: 96.05%
- Accuracy of ILU Codes: 93.81%
- Average running time: **51 ms**

(1) Source of Text Recognizers: <u>CRNN</u> (TPAMI'2016), https://arxiv.org/abs/1507.05717 [Last Access on 05.06.2023]; <u>NRTR</u> (ICDAR'2019), https://arxiv.org/abs/2007.07542 [Last Access on 05.06.2023]; <u>RobustScanner</u> (ECCV'2020), https://arxiv.org/abs/1806.00926 [Last Access on 05.06.2023]; <u>SAR</u> (AAAI'2019), https://arxiv.org/abs/1811.00751 [Last Access on 05.06.2023]; <u>SATRN</u> (CVPRW'2020), <u>https://arxiv.org/abs/1910.04396</u> [Last Access on 07.06.2023].

We aggregate the image sequence per gate drive through, and apply majority voting among the highest confidence

Photos: Schenker AG

Showcase Video: Detecting LP and ILU-Code and recognizing their content

Source: Schenker AG

We created a Grafana dashboard for visual investigation, debugging, and quality improvement

	Front Picture					Aggreg	ator Results			
14:29:45:85	6		Timestamp ↓	FrontPlate	RearPlate	Frontilu	Rearllu	Direction	TruckType	OEM
0	1 war	ALL TANK DIRAWAR INC.	<u>2023-06-06 16:39:04</u>	DUS	DUS			Exit_A	Tractor	OEM_Volvo
HI HI	E		2023-06-06 16:38:43	PBV	PBV			Entry_A	Large_Truck	OEM_Mercedes
		THE HE	2023-06-06 16:37:58	HST	HST			Entry_A	Empty_Swap_Body	OEM_MAN
1	1 AT		<u>2023-06-06 16:35:51</u>	OBS	DUE			Entry_A	Large_Truck	OEM_Mercedes
		Ale	2023-06-06 16:34:49	DUN	DUM			Exit_A	Empty_Swap_Body	OEM_MAN
			2023-06-06 16:33:22	DUE	DUEI	SJSB00	SJSB00	Entry_A	Swap_Body_Truck	OEM_Mercedes
			2023-06-06 16:32:54	DUE	DUE			Entry_A	Large_Truck	OEM_Mercedes
	24		2023-06-06 16:32:15	DUN	DUM			Exit_A	Tractor	OEM_MAN
			2023-06-06 16:30:55	DUE	DUE			Exit_A	Large_Truck	OEM_MAN
		preserve and a second	2022 06 06 16:20:07	DUB	1010			Foto: A	Tractor with Trailor	OFM MAN

For Developers

- Real-time dashboard
- Validation of images vs. detection
- Recognized data: LP, ILU code, truck type
- Further information per detection

For Stakeholders

- Demonstration of early results and new features
- Proof of correctness and real-time capabilities
- Discussion of data protection questions (e.g., face blurring)

Source: Schenker AG

DB SCHENKER | Dr. David Zibriczky | Global Data Strategy & Analytics | June 2023

Real-time streaming pipeline is run on edge device and extracted information is pushed to the cloud

Image: Architecture diagram created by draw.io at Schenker AG

For the production-grade development, we used an opensource technology stack

Multi-camera object detection and tracking in warehouses

Productivity measurement in a warehouse is essential, but location tracking data is inaccurate yet

- Items in a warehouse are managed by human workers with forklifts or pallet jacks and stored on pallets
- Operations of inventory takes significant human labor cost

- Location Analytics applies location data to derive insights into the activities
- It is essential to understand the efficiency of operations in various aisles (rows) and zones
- Distance, time, and density-based KPIs are applied

- Wi-Fi triangulation system tracks devices in real-time
- Signals are distorted due to metal and other materials, tracking can be inaccurate by 4-6 meters

Use Case: Find an alternative way of collecting location-based information on activities and provide more accurate tracking of items in the warehouse.

Images: Schenker AG

We have installed several cameras in one of our facilities

Images: Schenker AG; Basler Area Scan Cameras, https://www.baslerweb.com/en/products/cameras/area-scan-cameras/[Last Access on 05.06.2023].

We have identified 4 types of objects that we want to detect

Source: Schenker AG

We selected YOLOv3 that provided a tradeoff between precision and latency for real-time application

Experimental procedure:

- Train and test set: Approx. 6000 images on 4 aisles
- Open-source algorithms tested¹: HTC, **YOLOv3**, ASFF, RFBNet
- Inference hardware: Nvidia RTX 2080 Ti
- Evaluation metrics: Precision, Recall, **Average Precision** and Runtime

Key findings:

- Higher accuracy requires higher latency (lower FPS)
- Best trade-off: YOLOv3-ASFF on 608x608 resized images
- Detected objects are precise in 94% of the cases
- Detection of pallet jack (Hubwagen) is the most difficult one

Objektklasse	\mathbf{RC}_k	\mathbf{PR}_k	$\mathbf{AP}^*_{k,s}$	$\mathbf{AP}^*_{k,m}$	$\mathbf{AP}^*_{k,l}$	$AP_k@0.5$
Person	94.26	97.47	88.93	98.83	-	93.71
Palette	95.97	96.87	93.16	97.04	99.07	95.37
Hubwagen	92.71	97.41	90.68	97.14	-	9 2.33
Gabelstapler	95.51	98.15	87.85	96.12	96.07	95.19
	94.15					

(1) Source of Object Detectors: <u>HTC</u>, https://arxiv.org/abs/1901.07518v2 [Last Access on 05.06.2023]; <u>YOLOv3</u>, https://arxiv.org/abs/1804.02767 [Last Access on 05.06.2023]; <u>ASFF</u>, https://arxiv.org/abs/1911.09516v2 [Last Access on 05.06.2023]; <u>RFBNet</u>, https://arxiv.org/abs/1711.07767 [Last Access on 05.06.2023].

Projection from the camera view to the ground is solved by reference coordinates and Planar Homography

The Image Projection Problem

Project coordinates from the camera image to the ground

The Solution Step 1

We identified reference coordinates in various locations of the warehouse

The Solution Step 2

Planar Homography is a projection from one plane that is calculated by Direct Linear Transformation

Source: Schenker AG; T. Opsahl: Estimating homographies from feature, in: Unik 4690, <u>https://www.uio.no/studier/emner/matnat/its/TEK5030/v19/lect/lecture 4 3-estimating-homographies-from-feature-correspondences.pdf</u> [Last Access on 05.06.2023].

Objects are globally tracked based on overlapping bounding boxes with Kalman Filter and greedy handover

The Object Tracking Problem

Identify and track the same object by multiple camera without duplicated and noisy tracking

The Solution Step 1

Objects per camera are tracked based on overlapping bounding boxes per frame and denoised by Kalman Filter

Predict, measure, correct cycle iteratively estimates the state at each time step

The Solution Step 2

We define a triplet-based greedy camera handover method:

- 1. Identify any object with the following **local track triplet**: camera id, object class id, local track id
- 2. A **global track** of an object is a list of local tracks triplets
- 3. In every frame, all local track triplets are checked if they co-occur in the global scene at least a given time period
- 4. If yes, it is checked if the mean distance in this period is below a minimum threshold
- 5. If yes, the two global tracks of the two local triplets are merged into one

Source: T. Opsahl: Estimating homographies from feature, in: Unik 4690, https://www.uio.no/studier/emner/matnat/its/TEK5030/v19/lect/lecture 4-3-estimating-homographies-from-feature-correspondences.pdf [Last Access on 05.06.2023]; Kalman Filter, https://www.uio.no/studier/emner/matnat/its/TEK5030/v19/lect/lecture 4-3-estimating-homographies-from-feature-correspondences.pdf [Last Access on 05.06.2023]; Kalman Filter, https://www.codeproject.com/Articles/865935/Object-Tracking-Kalman-Filter-with-Ease [Last Access on 05.06.2023].

A brief showcase of multi-camera object tracking with 4 cameras in bulk and rack areas

Source: Schenker AG

DB SCHENKER | Dr. David Zibriczky | Global Data Strategy & Analytics | June 2023

Overview of other use cases

Use Case: Tracking and measuring idle time of pallets in the inbound area of the warehouse

The challenge:

- Incoming pallets are **stored in the inbound area**
- Some pallets have a long waiting time
- They reserve space and increase dock-to-stock time which leads to reduced handling efficiency

The idea:

- Use video analytics to detect and track pallets
- Pallets are given a timestamp to track dock-tostock times
- Provide put-away priorities to forklift drivers and a dashboard of the critical inbound KPIs

Source: Schenker AG

Use Case: Estimating utilization of truck with sensors and Computer Vision

The challenge:

- Loading trucks with cargo is still a manual process
- Before departure, the exact utilization of the truck is often not registered

The idea:

- Use computer vision to estimate depths in the image and **reconstruct the container** in 3D
- **Estimate utilization** based on free space in the container
- Provide utilization info for additional loading to improve efficiency of the transportation network

Detection of

gate position

Neural network estimates depth

Source: Schenker AG

Beyond our current focus, we see a wide range of further use cases where video analytics can create business value

Photos: Schenker AG and Shutterstock

Kudos to the Video Analytics Squad – a joint team of DB Schenker and Fraunhofer IML

DB SCHENKER

Contact

DB Schenker Global Data Strategy and Analytics

Dr. David Zibriczky Director Data Science Kruppstr. 4 45128 Essen, Germany david.zibriczky@dbschenker.com

dbschenker.com blog.dbschenker.com

in f 🖾 Þ