hearsay

Challenges of Building a Domain-Specific Recommender System

Case Study

06/08/2023

Agenda 01 Introduction

- 02 Problem Statement & Background
- **03** Topic Modeling
- 04 Zero-Shot Text Classification
- **05** Imbalanced Dataset
- **06** Business Impact & Insights

Introduction

About Us

Zoltán Balogh

4

Senior Data Scientist

h

Veronika Palotai

Data Scientist

About Hearsay Systems

SaaS products for clients in the financial services industry

compliant communication across all social media platforms between financial services providers and their audience

5

heavily regularized (U.S. market)

Problem Statement & Background

7

100+ leading financial firms, more than 200,000 users

Quality customer data from the past 10 years

Q

Data science use cases identified

Business Requirements

• Personalize the **Post Library** based on agents' interest and their network's preferences

 Advisor interest recommend posts similar to what the advisor has
 published recently Audience interest recommend posts similar to what the advisor's audience liked

Exploratory Data Analysis Highlights

How do advisors interact with the Post Library?

• 50% of advisors publish articles once a week on average

Exploratory Data Analysis Highlights

Are there enough articles to recommend from?

10

 ~12% of workspaces had on average 5 articles available on a weekly basis

Topic Modeling

LDA - A Probabilistic Approach

- Assumptions:
 - \circ Document \Rightarrow distribution of topics
 - \circ Topic \rightarrow distribution of words
- Topic coherence to decide the optimal number of topics
- Tweaking hyperparameters *alpha* and *beta*

Interpreting the Results

• Topics with the 10 most probable words in each

[(0,

"0.015*"technology" + 0.015*"insurance" + 0.012*"news" + 0.009*"datum" + 0.009*"industry" + 0.008*"climate" + 0.006*"tech" + 0.006*"follow" + 0.006*"story" + 0.006 *"system"'),

(1,

'0.014*"job" + 0.010*"employee" + 0.010*"team" + 0.010*"learn" + 0.009*"career" + 0.009*"client" + 0.008*"opportunity" + 0.008*"experience" + 0.007*"ask" + 0.007*"s upport"),

•

(10,

13

'0.058*"investment" + 0.038*"investor" + 0.026*"bond" + 0.025*"stock" + 0.024*"invest" + 0.020*"portfolio" + 0.020*"asset" + 0.012*"income" + 0.012*"equity" + 0.011
*"interest"'),

Visualizing the Output with PyLDAvis

14

h

Leveraging BERT for Topic Modeling

- Embeddings-based **→** capture semantic information
- Modular, no preprocessing required

Zero-Shot Text Classification

Zero-Shot Learning

• Zero-Shot Learning (ZSL) is a "heterogeneous transfer learning", where a pre-trained deep learning model is used to generalize on a novel category of samples (feature and label spaces are disparate)

0.35

0.87

Task-Aware Representation of Sentences

Zero-Shot Text Classification

• PoC locally on 12 cores, then on AWS

- FlairNLP: pretty fast and accurate result
 - O Inference speed (12 categories, local): ~0.5s/article
 - Rate of successful predictions: ~65%
- Facebook's BART (Hugging Face transformers)
 - Inference speed (12 categories, local): ~20s/article
 - Inference speed (validating the output of FlairNLP, 1 category, local): ~0.5s/article

ZSTC Results

- 10000

- 8000

- 6000

- 4000

- 2000

- Some of the articles fall into more than one category
 - The algorithms struggle to agree

0.5 73 199 260 342 468 650 920 1353 2178 3895 2723 0.6 97 334 536 620 910 1245 1765 2632 4230 7621 5429 0.0 103 306 452 641 897 1189 1795 2625 4393 7980 5899 0.0 129 334 471 597 964 1344 1967 2969 5003 9495 7364 0.9 181 371 524 749 1028 1485 2069 3239 5648 11804 1023 1.0 2622 345 369 455 893 1220 1764 2426 3508 8605 727		0	0	Ö	Ö	BA	O RT Sco	o re	0	Ö	Ö	,
0.5 73 199 260 342 468 650 920 1353 2178 3895 2723 0.6 97 334 536 620 910 1245 1765 2632 4230 7621 5429 0.6 97 103 306 452 641 897 1189 1795 2625 4393 7980 589 0.7 103 306 452 641 897 1189 1795 2625 4393 7980 589 0.8 129 334 471 597 964 1344 1967 2969 5003 9495 7364 0.9 181 371 524 749 1028 1485 2069 3239 5648 11804 1023 1.0 2622 345 369 455 893 1220 1764 2426 3508 8605 727		0.	Ξ	2	ŝ	4	:5	9	5		ō,	0
0.5 73 199 260 342 468 650 920 1353 2178 3895 2723 0.6 97 334 536 620 910 1245 1765 2632 4230 7621 5429 0.7 103 306 452 641 897 1189 1795 2625 4393 7980 5899 0.9 129 334 471 597 964 1344 1967 2969 5003 9495 7364 0.9 181 371 524 749 1028 1485 2069 3239 5648 11804 1023	1.0	262	345	369	455	893	1220	1764	2426	3508	8605	7271
0.5 73 199 260 342 468 650 920 1353 2178 3895 2723 0.6 97 334 536 620 910 1245 1765 2632 4230 7621 5429 0.7 103 306 452 641 897 1189 1795 2625 4393 7980 5894 0.8 129 334 471 597 964 1344 1967 2969 5003 9495 7364	0.9	181	371	524	749	1028	1485	2069	3239	5648	11804	10238
0.5 73 199 260 342 468 650 920 1353 2178 3895 2723 0.6 97 334 536 620 910 1245 1765 2632 4230 7621 5429 8 0.7 103 306 452 641 897 1189 1795 2625 4393 7980 5896	Elair 8.0 E	129	334	471	597	964	1344	1967	2969	5003	9495	7364
0.5 73 199 260 342 468 650 920 1353 2178 3895 2723 0.6 97 334 536 620 910 1245 1765 2632 4230 7621 5429	0.7 Cole	103	306	452	641	897	1189	1795	2625	4393	7980	5896
0.5 73 199 260 342 468 650 920 1353 2178 3895 2723	0.6	97	334	536	620	910	1245	1765	2632	4230	7621	5429
	0.5	73	199	260	342	468	650	920	1353	2178	3895	2723

Heatmap of Flair & BART scores

The Data Requirement of the Project

- Only approximately ¹/₃ of the articles were kept in the training set from the available articles
- A huge proportion of the raw data is unusable

Imbalanced Dataset

Imbalanced Dataset

- To reduce imbalances, we tried
 - Adding articles from 3rd parties
 - Text generation
 - Article crawling
 - o Undersampling

Evaluation Metrics

- Threshold metrics (accuracy, F-measure etc.): Quantify the classification prediction errors
 - Specificity
 - o G-mean
- **Ranking metrics** (ROC, PR etc.): Focuses on how effective the algorithms are at separating classes
 - ROC (Receiver Operating Characteristic) curve
 - PR (Precision-Recall) curve

Comparison Of Performar

An Experimental

Classification

For

Metrics & Evaluation

XGBoost model:

Jason Brownlee: Imbalance Classification with Python

- Accuracy: 0.7799
- ROC AUC: 0.7834
- PR AUC: 0.2992

- Train/test split
- K-fold cross-validation with stratification

Business Impact & Insights

Post Publication Rate

• The rate of publishing a post after clicking on it is **~8% higher** for the recommended contents

Engagement Rate

• The engagement rate^{*} of advisor and audience interest-based recommendations was **9% higher** than that of posts published from the library

*Engagement rate of a post =
$$\frac{\sum Inbound \ Engagement}{\sum Publishes}$$

Questions?

