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About Hearsay Systems

Saa$S products for clients in the financial services industry

! !

compliant communication . .
. . ) heavily regularized
across all social media GEIEELLEE
. . (U.S. market)
platforms between financial

services providers and their
audience



Problem Statement & Background
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100+ leading financial
firms, more than
200,000 users

&3
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Quality customer data
from the past 10 years

L

Data science use cases
identified



Business Requirements
® Personalize the Post Library hearsay P“‘“'f’a'yu —
based on agents’ interest and £ )
their network’s preferences

!

® Advisor interest -
recommend posts similar to
what the advisor has

o RuINE TneePEY: -

recommend posts similar to
what the advisor’s audience
liked

Falling into debt trap is easy If we forg... Working mothers should aim to create Benefits for Women Becoming Financi. 7 Black Financial Influencers to Follow
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Exploratory Data Analysis Highlights

How do advisors interact with the Distribution of Average Publishing Frequency per Advisor
. 104
Post Library?

=== mean
=== median

® 50% of advisors publish

. 103
articles once a week on
average g
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Exploratory Data Analysis Highlights

Average Weekly Available Unique Contents in 2022 for Workspaces

Are there enough articles to
recommend from?

————— Recommender system threshold
--- 25 available contents

100

® ~12% of workspaces had on -
average 5 articles available

on a weekly basis S -
P

g p

2
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10° 10t 10?
Average Weekly Available Unigque Contents per Workspace



Topic Modeling
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LDA - A Probabilistic Approach

® Assumptions:

O Document = distribution of topics

O Topic=» distribution of words
® Topic coherence to decide the optimal number of topics
e Tweaking hyperparameters alpha and beta

Coherence Score

050

042

Coherence over Number of Topics

6
Number of Topics




Interpreting the Results

® Topics with the 10 most probable words in each

(e,
|'0.815*"technology”|+ B.015%"insurance" + 0.012%"news" + 0.009%"datum" + 0.009%"industry" + 0.008%"climate" + 0.006%"tech" + 0.006%"follow" + 0.006x"story" + 0.006
*'system"'),
(1,
'0.014%"job" + 0.010x"employee" + 0.010x"team" + 0.010+"learn” + 0.009%"career" + 0.009%"client" + 0.008+"opportunity" + 0.008+"experience" + 0.007x"ask" + 0.0087x"s
upport"'),
[
[
[
(10,

'0.058%" investment" + 0.038+"investor" + 0.026%"bond" + @.025%"stock" + 0.024x"invest" + 0.020x"portfolio" + 0.020*%"asset" + 0.012%"income" + 0.012x"equity" + 0.011
13 *interest"'),



Visualizing the Output with PyLDAvis

Intertopic Distance Map (via multidimensional scaling)

1

PC1
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Marginal topic distribution

5%

PC2

Top-30 Most Salient Terms'
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retirement
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credit
saving
bond
asset
stock
invest
home
management
car

age
service
child
portfolio
client
customer
inflation
card
growth
woman
job
product
economy

Overall term frequency
I Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(1))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = A * p(w I 1) + (1 - A) * p(w | t)/p(w); see Sievert & Shirley (2014)



Leveraging BERT for Topic Modeling

® Embeddings-based=» capture semantic information
® Modular, no preprocessing required

UMAP of the Embeddings by Topic

PO R i g
gl GPT / T5 m. XN MMR [
e 4

e 6

= e 8

Weighting

scheme - ..

. c-TF-IDF c-TF-IDF
. [('retirement', ©.0208), ('insurance', 8.017), ('social', @.0137), ('income',
Tokenizer 0.013), ('age', 0.0129), ('policy', .0124), ('security', 0.8115), ('saving',
0.0098), ('retire', ©.0096), ('coverage', 0.0094)]
- —> T e
s I : : L ]
1 in 89 g0 ; [('credit', ©.0303), ('card', 0.0265), ('debt', 0.0252), ('coin', @.0198),
Clustering ¢ 4 , &P, (*loan', 0.0193), ('mortgage’, 0.0188), ('lender', ©.0179), ('payment', 0.017
A 8), ('cash', 0.0161), ('bank', 0.0157)]
" : ‘ =] 7F-10F —
Dlnle:::iourz::: i & [('car", 0.0263), ('apple', 0.0163), ('driver', @.0153), ('park', 0.0129),
('beach', ©.0121), ('drive', 9.0116), ('island', @.8112), ('iphone', @.0101),
('vehicle', 0.8099), ('tesla', ©.0098)]
2 . -
.
0
4 6 8 10 12 14

https://maartengr.github.io/BERTopic/algorithm/algorithm.html



Zero-Shot Text Classification
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Zero-Shot Learning

® Zero-Shot Learning (ZSL) is a “heterogeneous transfer learning”,
where a pre-trained deep learning model is used to generalize on
a novel category of samples (feature and label spaces are
disparate)




Task-Aware Representation of Sentences

output + confidence score

_True False

Linear Layer +

»

18

Topic Detection

-
-

Text: White house stated..
Label: topic politics

Sentiment Analysus

Text:The movie was great
Label: positive sentiment

\_/

https://kishaloyhalder.github.io/pdfs/tars_coling2020.pdf
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Zero-Shot Text Classification

® PoC locally on 12 cores, then on AWS

® FlairNLP: pretty fast and accurate result
O Inference speed (12 categories, local): ~0.5s/article
o Rate of successful predictions: ~65%

e Facebook’s BART (Hugging Face transformers)
o Inference speed (12 categories, local): ~20s/article
o Inference speed (validating the output of FlairNLP,

1 category, local): ~0.5s/article
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Flair Score

ZSTC Results

® Some of the articles fall into more than one category
O The algorithms struggle to agree

Heatmap of Flair & BART scores

BART Score
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The Data Requirement of the Project

e Only approximately % of the articles were kept in the training set from the
available articles
® A huge proportion of the raw data is unusable

Articles published through Hearsay | |English articles Valid zero shot topic classification output 3rd party aﬂic]ss

Unique items

[ |French, Spanish, German articles . . s . .
P ‘ Non-valid classifications [ |Duplicates Flair & Facebook's Bart confidence above 60%

21 Weighted undersampling

Below 60%



Imbalanced Dataset
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Imbalanced Dataset

® To reduce imbalances, we tried

®)

®)
®)
0]

Adding articles from 3rd parties
Text generation
Article crawling
Undersampling

economy

technology

investment

health

travel



Evaluation Metrics

® Threshold metrics (accuracy, F-measure etc.): Specificity TrueNegative
Quantify the classification prediction errors FalsePositive + TrueNegative
O Specificity
G-mean = +/Sensitivity x Specificit
o G-mean v y % 5P y

e Ranking metrics (ROC, PR etc.): Focuses on
how effective the algorithms are at separating

classes .
. . o Precision — TruePositive
O ROC (Receiver Operating Characteristic) TeCISIOn = oy ePositive & FalsePositive
curve »
. . I Recall TruePositive
- €Call =
o O PR (Precision-Recall) curve TruePositive + FalseNegative

h
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Metrics & Evaluation

XGBoost model:
® Accuracy: 0.7799
e ROC AUC: 0.7834
e PR AUC: 0.2992

ROC Curves - all vs the rest

—— career
= environment
—— finance
—— insurance
—— investment
— lifestyle
—— property
—— relationship
retirement
sport
technology
—— baseline

00 02 04 06 08 10
False Positive Rate

08

=4
o

True Positive Rate
o
=

0.2

00 ...

® Train/test split
e K-fold cross-validation with
stratification

PR Curves - all vs the rest

—— career
—— environment
— finance
—— insurance
—— investment
— lifestyle
—— property
—— relationship
retirement
sport
technology
no skill

0.0 02 04 06 08 10
False Positive Rate



Business Impact & Insights



Post Publication Rate

® The rate of publishing a post after clicking on itis ~8% higher for the
recommended contents

® Recommended
AR TSN NN AN ¢

100%

50%

27
0%
Mar29 Apr3 Apr8 Apri3 Apri18 Apr23 Apr28 May3 May8 Mayl13d May18 May23
Wed Mon Sat Thu Tue Sun Fri Wed Mon Sat Thu Tue
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Engagement Rate

e The engagement rate* of advisor and audience interest-based
recommendations was 9% higher than that of posts published from the library

Inbound Engagement
2 gag
> Publishes

*Engagement rate of a post =

h
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Questions?
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