
DELTA LAKE &
DELTA SHARING

2022

Imre Greilich
Data Engineer

BUDAPEST DATA FORUM

WHAT DO
WE DO?

YOUR GUIDE TO THE DATA CLOUD

● we make data understandable,
accessible and useful

● we deliver solutions to unsolvable
problems

● we bring order to disorganized systems

DATAPAO HAS BEEN BUILT TO GUIDE YOU THROUGH THE WHOLE DATA JOURNEY

• Cutting edge technologies
• Solution development

• Joint innovation efforts

• Data Engineer and Data
Scientist enablement

• Software Engineer transition
to Data Engineer

• Data Platform and Data
Cloud trainings

• Data Engineering
• Data Science
• Cloud migration
• Pipeline development
• Query Optimization
• MLOps

CONSULTING
We solve your toughest

data challenges

EDUCATION
We train your

internal data team

LABS
We pursue your industry’s

unanswered questions

YOUR GUIDE TO THE DATA CLOUD

DELTA LAKE

YOUR GUIDE TO THE DATA CLOUD

BRIEF STORY

WHAT IS DELTA LAKE?

YOUR GUIDE TO THE DATA CLOUD

• Open source storage layer built on parquet format
• Enables building a Lakehouse architecture
• Integrations with multiple compute engines
• APIs for Scala, Java, Rust, Ruby, and Python
• Simpler, faster, safe ETL

YOUR GUIDE TO THE DATA CLOUD

DELTA LAKE FEATURES

• ACID transactions
• Scalable metadata handling
• Time travel & Audit history
• Schema enforcement & Schema evolution
• Delete, update and merge support
• Streaming / batch unification

TRANSACTION LOG
• Ordered record of changes performed on the table
• Stored in the _delta_log folder
• Similar to the .git folder in a code repository
• Changes are stored in JSON files, once the

transaction is “committed”
• Each JSON file contains the changes compared to

the previous version

YOUR GUIDE TO THE DATA CLOUD

A GLANCE INTO A SNAPSHOT OF THE TRANSACTION LOG

• Change metadata
• Add file
• Remove file
• Transaction identifiers
• Protocol evolution
• Commit info

YOUR GUIDE TO THE DATA CLOUD

CONCURRENCY CONTROL IN DELTA LAKE

1. Read the latest version of the table
2. Stage changes by writing new data files
3. Validate - commit new snapshot or reject

OPTIMISTIC CONCURRENCY CONTROL
3 steps of a write operation

Avoid conflicts by partitioning

• E.g. partition by date, if you usually filter for date
• If the intervals don’t overlap, then different

partitions will be written → won’t conflict

YOUR GUIDE TO THE DATA CLOUD

RECOMPUTING STATES

• After each 10 commits a checkpoint file is created
• Parquet format (not JSON)
• Contains the union of the preceding transactions
• Much faster to reproduce the table’s state
• Also deletes old log files older than 30 days by default

delta.logRetentionDuration = "interval <interval>"

CHECKPOINT FILES

YOUR GUIDE TO THE DATA CLOUD

SCHEMA ENFORCEMENT & SCHEMA EVOLUTION

• Schema is enforced on the source dataset
• If the schema changes, and you want to propagate

the update to the sink, you can overwrite the
schema

• Adding new columns to the schema can be
automated for the operation or for the whole
session

Getting started

GETTING STARTED

YOUR GUIDE TO THE DATA CLOUD

PySpark Shell
• Check version compatibility

pip install pyspark

pyspark --packages io.delta:delta-core_2.12:1.2.1 --conf
"spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension" --conf
"spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog"

Databricks Community Edition
• Sign Up
• Insert profile details
• “Get started for free”
• “Get started with Community Edition”

Instead of using “parquet” format… …simply use “delta”

https://docs.delta.io/latest/releases.html
https://community.cloud.databricks.com/login.html

YOUR GUIDE TO THE DATA CLOUD

GETTING STARTED

BASIC SYNTAX - SQL
-- Create table in the metastore
CREATE TABLE people (
 id INT,
 firstName STRING,
 lastName STRING,
 ...
)
USING DELTA
PARTITIONED BY (...)

-- Create table in the metastore using existing data
CREATE TABLE people

USING DELTA

LOCATION '/tmp/delta/people'

-- Insert into a table with overwrite option
INSERT OVERWRITE TABLE default.people SELECT * FROM morePeople

-- Delete from a table
DELETE FROM people WHERE birthDate < '1955-01-01'

-- Update a table
UPDATE people SET gender = 'Female' WHERE gender = 'F';

YOUR GUIDE TO THE DATA CLOUD

GETTING STARTED

BASIC SYNTAX - PYTHON
Create table in the metastore

DeltaTable.createIfNotExists(spark) \

 .tableName("people") \

 .addColumn("id", "INT") \

 .addColumn("firstName", "STRING") \

 ...

 .execute()

Append data to a table

df.write.format("delta").mode("append").save("/tmp/delta/people")

df.write.format("delta").mode("append").saveAsTable("people")

Delete from a delta table

deltaTable = DeltaTable.forPath(spark, '/tmp/delta/people')

deltaTable.delete("birthDate < '1955-01-01'")

Update data in a delta table

deltaTable.update(condition = "gender = 'F'", set = { "gender": "'Female'" })

YOUR GUIDE TO THE DATA CLOUD

GETTING STARTED

MERGE - SQL
MERGE INTO logs

USING newDedupedLogs

ON logs.uniqueId = newDedupedLogs.uniqueId AND logs.date > current_date() - INTERVAL 7 DAYS

WHEN NOT MATCHED AND newDedupedLogs.date > current_date() - INTERVAL 7 DAYS

 THEN INSERT *

MERGE - PYTHON
deltaTable.alias("logs").merge(

 newDedupedLogs .alias("newDedupedLogs"),

 "logs.uniqueId = newDedupedLogs.uniqueId AND logs.date > current_date() - INTERVAL 7 DAYS") \

 .whenNotMatchedInsertAll("newDedupedLogs.date > current_date() - INTERVAL 7 DAYS") \

 .execute()

Utility

commands

YOUR GUIDE TO THE DATA CLOUD

UTILITY COMMANDS

VACUUM
• Removes files no longer referenced by a Delta table

(i. e. log files were removed)
• Default retention period is 7 days

DESCRIBE HISTORY
• Shows audit logs for the delta table
• Perfect input for Time Travel, statistics and performance optimization
• Operations e.g.: write, create table, streaming update, delete, optimize, truncate, merge, convert, restore

UTILITY COMMANDS

TIME TRAVEL
• Query earlier versions of a delta table
• Restore to an earlier version (e.g. after an accidental

delete/update, or a buggy pipeline run)
• Reproduce experiments

CLONE
• Shallow clone
• Deep clone

OPTIMIZE
• Improves query speed by coalescing small files into

larger ones
• Optional Z-order to physically order the records
• The data will not change

CONVERT A PARQUET TABLE TO DELTA

• SQL: CONVERT TO DELTA parquet.`<path-to-table>`

• Python: DeltaTable.convertToDelta()

CONVERT A DELTA TABLE TO PARQUET

• Run VACUUM to delete data from previous versions

• Delete the _delta_log directory

UTILITY COMMANDS

DELTA LAKE ROADMAP

YOUR GUIDE TO THE DATA CLOUD

DELTA LAKE ROADMAP

FEATURE DESCRIPTION TARGET

OPTIMIZE Table optimize is an operation to rearrange the data and/or metadata to
speed up queries and/or reduce the metadata size

released (1.2)

File skipping
using column
stats

This is a performance optimization that aims at speeding up queries that
contain filters (WHERE clauses) on non-partitionBy columns.

released (1.2)

RESTORE Rollback to a previous version of a Delta table using Python, Scala, and/or
SQL APIs.

released (1.2)

OPTIMIZE
ZORDER

Data clustering via multi-column locality-preserving space-filling curves
with offline sorting.

2022 Q3/Q4

CLONE Clones a source Delta table to a target destination at a specific version. A
clone can be either deep or shallow: deep clones copy over the data from
the source and shallow clones do not.

2022 Q3

Change Data
Feed

The Delta change data feed represents row-level changes between
versions of a Delta table. When enabled on a Delta table, the runtime
records “change events” for all the data written into the table.

2022 Q3

DELTA SHARING

YOUR GUIDE TO THE DATA CLOUD

DELTA SHARING

• Open REST protocol for secure real-time
exchange of large datasets

• Share data with other organizations regardless
of computing platform

• Direct connection without copying
• Strong security, auditing and governance

OVERVIEW

YOUR GUIDE TO THE DATA CLOUD

DELTA SHARING

1. The recipient’s client authenticates to the sharing server
2. The server verifies the client’s privileges and determines which subset to send back
3. The server generates short-lived URLs that allow to read the parquet files directly.

Transfer can happen in parallel at massive bandwidth

HOW DOES IT WORK

YOUR GUIDE TO THE DATA CLOUD

DELTA SHARING

I already have a table that I want to share select * from vaccine_data.vaccinations

Create a share create share vaccine_data

Add some tables to the share alter share vaccine_data add table vaccine_data.vaccinations;
alter share vaccine_data add table vaccine_data.distributors;

Check if the tables are correctly added
(shows the tables added to the share)

describe share vaccine_data

Create a recipient (returns the activation link
for the recipient)

create recipient cdc

Send the link to the partner, who can use it
to download a credential file

Grant access to the recipient grant select on share vaccine_data to recipient cdc

SETTING UP IN DATABRICKS

YOUR GUIDE TO THE DATA CLOUD

DELTA SHARING

Import the library (first install it) import delta_sharing

List all available tables at that share delta_sharing.SharingClient(share_file_location).list_all_tables()

Load one table to a Spark
DataFrame

df = delta_sharing \
 .load_as_spark(share_file_location +
"#vaccine_data.vaccine_data.vaccinations")

Load one table to a Pandas
DataFrame

df = delta_sharing \
 .load_as_pandas(share_file_location +
"#vaccine_data.vaccine_data.vaccinations")

READING TABLES WITH PYTHON

DELTA SHARING

ROADMAP
• Sharing other objects than tables:

○ Data streams
○ ML models (MLflow)
○ Views
○ Arbitrary files

• Time-based sharing permissions (0.3.0)

WE MAKE
DATA YOUR
SUPERPOWER

IMRE GREILICH
DATA ENGINEER

+36-20-211-8484
imre.greilich@datapao.com
datapao.com

mailto:imre.greilich@datapao.com

