
GPU-accelerated
graph analytics in LynxKite

Daniel Darabos

GPU-accelerated algorithms are the latest addition to the LynxKite open-source
graph data science platform. With the hardware and software improvements of the
last few years, GPUs have become a viable and super fast alternative to classical
big data tools. In this talk I will introduce NVIDIA’s RAPIDS cuGraph library,
explain how we have made it a seamless part of LynxKite workflows, and show a
few cool applications this has enabled.

GPU-accelerated graph analytics in LynxKite

What is LynxKite?

What is LynxKite?

An open-source data science tool for analyzing graphs. (E.g. social networks.)

LynxKite has a Python API and a rich web UI.

LynxKite has 200+ operations from the mundane (import CSV, merge parallel
edges) to the sophisticated (find optimal Steiner tree, train graph neural network).

Most of these are our own implementations, but some come from open-source
libraries.

We have an enterprise version that is used by telecom companies, banks,
retailers, etc.

What is a GPU?

What is a GPU?

Like a CPU, but fast.

What is a GPU?

Like a CPU, but fast.

But cannot run Python code.

Only manufactured by NVIDIA.*

What is NVIDIA RAPIDS?

What is NVIDIA RAPIDS?

Pandas that runs on GPUs.

Also Numpy, scikit-learn, SciPy Signal, crossfilter, scikit-image, NetworkX.

CuPy cuML cuSignal cuxfilter cuCIM cuGraph

Pandas that runs on GPUs.

Also Numpy, scikit-learn, SciPy Signal, crossfilter, scikit-image, NetworkX.

What is NVIDIA RAPIDS?

import cudf
import cugraph
gdf = cudf.read_csv(
 'edges.csv',
 dtype=['int32', 'int32'], names=['src_id', 'dst_id'])
G = cugraph.Graph()
G.from_cudf_edgelist(
 gdf, source='src_id', destination='dst_id')
bc = cugraph.betweenness_centrality(G)
bc.to_csv(bc.csv', index=False)

Released this week.

PageRank, connected components, betweenness and Katz centrality, the Louvain
method, k-core decomposition, and a 2D layout algorithm are GPU-accelerated.

New faster storage layer for graph stuff.

New Python API to allow mixing LynxKite and raw PySpark stuff.

Backend preference is now configurable.

LynxKite 5.0

Getting started

docker run \

 -p 2200:2200 \

 -e KITE_ENABLE_CUDA=yes \

 --gpus all \

 --name lynxkite lynxkite/lynxkite:latest-cuda

How cuGraph works: In CUDA We Thrust
 auto val_first = thrust::make_zip_iterator(

 thrust::make_tuple(*personalization_vertices, *personalization_values));

 thrust::for_each(

 handle.get_thrust_policy(),

 val_first,

 val_first + *personalization_vector_size,

 [vertex_partition, pageranks, dangling_sum, personalization_sum, alpha] __device__(

 auto val) {

 auto v = thrust::get<0>(val);

 auto value = thrust::get<1>(val);

 *(pageranks + vertex_partition.local_vertex_partition_offset_from_vertex_nocheck(v)) +=

 (dangling_sum * alpha + static_cast<result_t>(1.0 - alpha)) *

 (value / personalization_sum);

 });

Databricks integration.

Import from Gremlin sources.

Import and export for Google BigQuery.

Import complex graphs from data catalogs.

Streaming processing.

Visualization UI revamp.

LynxKite roadmap

All 32 algorithms to support MNMG.

More algorithms.

Better property graph support.

Better GNN support.

Better scaling for 1000+ GPUs.

cuGraph roadmap

twitter.com/DanielDarabos lynxkite.com rapids.ai

https://twitter.com/DanielDarabos
https://lynxkite.com/
https://rapids.ai/

