látogató számláló

=>Download presentation material

Building a Real-Time Data Pipeline with Using Confluent for Kubernetes

Today, enterprise technology is entering a watershed moment, businesses are moving to end-to-end automation, which requires integrating data from different sources and destinations in real time. Every industry from Internet to retail to services are leveraging NoSQL database technology for more agile development, reduced operational costs, and scalable operations. This institutes a need to model relational data as documents, define ways to access them within applications, and identify ways to migrate data from a relational database. This is where streaming data pipelines come into play.

Over the years, as the cloud’s on-demand resource availability, full-service, API-driven, pay-per-use model became popular and competitive, cloud infrastructure consolidation began, requiring the automated deployment of infrastructure to be simplified and scalable.

This session details one of the easiest ways to deploy an end-to-end streaming data pipeline that facilitates real-time data transfer from an on-premises relational datastore like Oracle PDB to a document-oriented NoSQL database, MarkLogic, with low latency, all deployed on the Kubernetes clusters provided by Google Cloud (GKE). Apache Kafka® is leveraged using Confluent Cloud on AWS, depicting a true multi-cloud deployment. Before getting into the details of implementation, the following terms are defined: Confluent Cloud, Confluent for Kubernetes (CFK), Oracle CDC, MarkLogic connectors, and Confluent Control Center.

Geetha Anne
Solutions Architect, CONfluent

Geetha Anne is a Solutions engineer at Confluent with previous experience in executing solutions for data driven business problems on cloud, involving data warehousing and real-time streaming analytics. She has fallen in love with distributed computing during her undergrad days and followed her interest ever since. She enjoys teaching complex technical concepts to both tech savvy and general audiences.